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1. Introduction

Leavitt path algebra has emerged as one of the most engaging fields of study in recent times.
Ever since it was introduced by Abrams and Pino in their seminal article [2], several mathemati-
cians have extensively worked in this new topic. Having its roots in the Leavitt algebras (a class
of K-algebras universal with respect to an isomorphism property between finite-rank free mod-
ules, where K is a field) introduced by Leavitt [10] in 1962, Leavitt path algebra is also significant
from an analytical perspective as it connects graph C*-algebras and Leavitt algebras. In fact,
obtaining a more complete algebraic picture of the different C*-algebras (for example, the
C*-algebra O, of a finite matrix A, or the Cuntz-Krieger algebra C*(E) for a finite graph E) was
a motivation behind the introduction of the Leavitt path algebra.

Abrams and Pino defined the Leavitt path algebra Lg(E) of a directed graph E with coefficients
in a field K. Clearly, this associates algebraic structures with graphs and, therefore, involves both
graph theory and algebra. Later, Leavitt path algebras have been generalized when they were
defined over rings (by M. Tomforde, cf. [15]) and over commutative semirings (by Katsov et al.,
cf. [9]). Abrams and Pino found that Lx(E) can be realized as an algebra of the form CK4(K)
(the latter being the algebraic analog of O,), and also that the completion of Lc(E) is virtually
same as C*(E). This motivated several researchers to look into the structure and properties of
Leavitt path algebras in more details (cf. [1]).

In this article, we introduce the Leavitt path algebra Lg(I") of a directed graph I' with coeffi-
cients in a Clifford semifield S. Clifford semifields are a particular kind of semirings. We consider
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the general properties of the Leavitt path algebras over Clifford semifields (after discussing the
basic notions regarding Clifford semifields in Section 2 and earlier results about Leavitt path alge-
bras in Section 3). One observes that a topic of central interest of studying Leavitt path algebras
so far has been to consider their simplicity or ideal-simpleness. Abrams and Pino, Katsov et al.
and Tomforde all gave precedence to this aspect of Leavitt path algebras in their works. Keeping
this in mind, we concentrate on the full k-simplicity of Ls(I") of a directed graph T" over a
Clifford semifield S. To be precise, we find the conditions (pertaining to the properties of S and
I') which are necessary and sufficient for Lg(I") such that the latter does not possess a particular
kind of ideals viz., full k-ideals (except the trivial ones). Another interesting aspect regarding the
homomorphisms defined on Leavitt path algebras is the Uniqueness theorem (also known as the
Cuntz-Krieger Uniqueness theorem). We introduce a special type of homomorphism called a c-
homomorphism on Leavitt path algebras over Clifford semifields and establish a version of the
Uniqueness theorem with regards to c-homomorphisms.
We now give some basic definitions and terminology regarding graphs.

Definition 1.1. A directed graph I' = (V,E,r,s) consists of two sets V and E, and two maps
r,s : E— V. The elements of V are called vertices and the elements of E are called edges. For any
edge e in V, s(e) is the source of e and r(e) is the range of e. If s(e) =v and r(e) = w, then we say
that v emits e and w receives e. Informally, we can think of e as having direction from v to w. If
r(e1) = s(ey) for some edges ey, e, € E, we say that e, and e, are adjacent.

In this article, the word “graph” will denote a directed graph unless otherwise mentioned.
Clearly, for any vertex v in V, s7'(v) is the set of all edges whose source is v, while r~!(v) is the
set of all edges whose range is v. If v does not emit any edges (that is, if s™!(v) = @), we call v a
sink whereas a vertex v is called regular if 0<|s™!(v)|<oo. A graph G is row-finite if |s~!(v)|<oo
for all vertices v of G. Abrams and Pino initially defined the Leavitt path algebras for row-finite
graphs only. Later, they generalized the definition for any directed graph [3].

A path p=eje,---e, in a graph is a sequence of edges ej, e, ..., e, such that r(e;) = s(e;1)
for i=1,2,...,n—1. A path is of length n if it consists of n edges. The source of p, denoted by
s(p), is defined to be the source of its initial edge s(e;); while (if p has finite length) the range of
p> denoted by r(p), is the range of its final edge r(e,). A vertex v € V is considered as being a
path of length 0, with s(v) = v = r(v). The set of all paths in T is denoted by E*). A path p is
called a closed path based at v if s(p) = r(p) = v. Again, a closed path based at v is called a closed
simple path at v if s(e;) # v for every i>1. CP(v) denotes the set of all closed paths based at v,
and the set of all closed simple paths based at v is denoted by CSP(v). A cycle is a closed simple
path which does not visit any of its vertices (except v) more than once. Thus, a path p is a cycle
if s(p) = r(p) and s(e;) # s(e;) for all i # j. If ¢ is a cycle with s(c) = r(c) = v, then ¢ is said to be
based at v. A graph containing no cycle is called acyclic. Finally, an edge e is an exit to a cycle
p =eiey - e, if there exists some i € {1,2,...,n} such that s(e;) = s(e) but e # e;.

2, Basic notions regarding Clifford semifields

A semiring is an algebraic system (S, +, ) consisting of a nonempty set S together with two bin-
ary operations “+” and “” on S, respectively called addition and multiplication, such that (S, +)
and (S,-) are semigroups which are connected by ring-like distributivity, that is,
a(b+c¢) =ab+ac, and (a+ b)c = ac+ be for all a,b,c € S.

A zero of a semiring S is an element 0 € S such that a+0=04+a=agaanda-0=0-a=0
for all a € S. An identity of a semiring S is an element 1 € S such that a-1=1-a =a for all
a € S. The zeroid of a semiring (S, +, ) is the set of all a in S such that a+b=>b or b+a="0 for
some b € S. The set of all additive idempotents of a semiring S will be denoted by E*(S). Thus
E*(S) ={a € Sla+ a = a}. Similarly, the set of all multiplicative idempotents is denoted by
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E*(S). A semiring S is said to be additively (respectively, multiplicatively) idempotent if (S, +)
(respectively, (S,-)) is a band. If S is both additively and multiplicatively idempotent, then we call
it an idempotent semiring.

A semiring S is said to be additively (respectively, multiplicatively) commutative if (S,+)
(respectively, (S,)) is a commutative semigroup. If S is both additively and multiplicatively com-
mutative, then it is called a commutative semiring. For notations and definitions regarding semir-
ings, we refer the reader to [5,7].

Now we discuss the motivation which led to the definition of the structure called a Clifford
semifield. It is known that commutative rings with 1 which are free of ideals (that is, for which
the only ideals are “trivial”) are fields. In the theory of semirings various generalizations of fields
are obtained by considering the semirings which are free from different types of ideals and con-
gruences. We give the definitions of ideal and k-ideal here.

Definition 2.1. [11] Let S be a semiring.

1. A nonempty subset A of S is called an ideal of Sif A+ A C A, and SA C A, AS C A.
2. Anideal A of S is called a k-ideal of S if for any x,y € §,x € A and either x+y € A or y +

x € A imply y € A (Golan in [5] called such an ideal to be subtractive).
3. Anideal A of S is called a full ideal of S if E*(S) C A.

Homomorphisms of semirings are defined in the usual way. Let S and T be two semirings. A
mapping f : S — T is called a homomorphism of S into T if f(x +y) = f(x) + f(y) and f(xy) =
f(x)f(y) for all x,y € S. Let S and T be two semirings with zero. A homomorphism f:S — T
is called a homomorphism of semirings with zero if it preserves the zero element, that is,
f(0) =0. The kernel of a homomorphism f, denoted by kerf, is defined to be the set
kerf = {x € S|f(x) = 0}. It can be shown that kerf is a k-ideal for any homomorphism f (possibly
the “k” in k-ideal stands for the word “kernel”). We define

A={x€Sx+y=zory+x=zfor somey,z€ A}

and A is called the k-closure of A. For any ideal I of S, the smallest k-ideal containing I is called
the k-closure of I. Thus, an ideal I of S is a k-ideal if and only if I = I.

The semiring S itself and the zero ideal (0) (if S has a zero) are considered as trivial ideals of
S. These ideals are also k-ideals. S is said to be simple (respectively, k-simple) or simply ideal-free
(respectively, k-ideal-free) if the only ideals (respectively, the k-ideals) of S are the trivial ones.

In order to study the generalizations of fields, it is natural to first consider the class of semir-
ings which are natural generalization of fields from the viewpoint of ring theory. The first such
generalization is a semifield which is defined below.

Definition 2.2. An additively commutative semiring (S, +,-) containing 1 and satisfying |S| > 2
is called a semifield if (S*,-) is a subgroup of (S, -).

We call a semiring (S, +, ) an additive inverse semiring if (S, +) is an additive inverse semi-
group, that is, for each a € S, there is a unique @’ € S such that a=a+d' +a,d =d +a+4d.
Additive inverse semirings were first studied by Karvellas [8] in 1974. For an additive inverse
semiring (S, +, ), Karvellas proved the following theorem.

Theorem 2.3. Let S be an additive inverse semiring. Then for any a,b € S and e € ET(S) we have
(i) (@) = a, (ii) ab' = (ab) = a'b (iii) ab = a'b' and (iv) ¢ = e.

The introduction of the concept of relative inverses in semigroups by A. H. Clifford (not to be
confused with W. K. Clifford after whom Clifford Algebra is named) led to the study of com-
pletely regular semigroups. For semirings, Sen, Maity, and Shum laid the axiomatic formulation
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for completely regular semirings (cf. [12]). Completely regular semirings are disjoint unions of
skew-rings (the latter being structures which have all the properties of rings except the additive
commutativity). Also, Sen et al. (cf. [14]) characterized semirings which are distributive lattices of
skew-rings and called them Clifford semirings (note that Ghosh [4] introduced Clifford semirings
as strong distributive lattices of rings). In [13], Sen, Maity, and Shum introduced Clifford semi-
fields. The definitions of Clifford semirings and Clifford semifields are given below.

Definition 2.4. A semiring S is called a Clifford semiring if it is an additive inverse semiring
such that for every a € § its inverse a’ satisfies

at+d=d+aandala+d)=a+d

and E*(S) is a distributive sublattice as well as a k-ideal of S.
Throughout the article, we assume that all the Clifford semirings contain 0.

Theorem 2.5. [14, Theorems 3.2 and 3.3] Let S be a semiring. Then the following conditions
are equivalent:

i. Sis a Clifford semiring
ii. S is an additive inverse semiring satisfying for all a,b € S;a+d = d +a;a(a+d)=a+d;
(a+da)b=>bla+4a); and a+ (a+a' )b =a, where d is the additive inverse of a, and if
a+d=d for some d € S, then that implies a+a=a;
iii. S is a strong distributive lattice of skew-rings.

Definition 2.6. Let S be a Clifford semiring with 1 such that 1 & E*(S). A nonadditive idempo-
tent element a € § is said to be left invertible if there exists an element r € S such that
ra+ 1+ 1" = 1. In this case, r is called a left inverse of a. Similarly, we can define a right invert-
ible element in a Clifford semiring. An element is said to be invertible if it is left invertible as
well as right invertible. If a is invertible, we say that a is a unit of S.

Definition 2.7. A Clifford semiring S is called a Clifford semifield if
(i) 1 € S such that 1 € E*(S),
(ii) S is commutative and
(iii) every nonadditive idempotent element of S is a unit.

Theorem 2.8. A commutative Clifford semiring S with 1 is a Clifford semifield if and only if S is
full ideal-simple.

Proof. First, suppose that S is a Clifford semifield and let I be an ideal of S such that E*(S)GI.
Then there exists an element a € I such that a ¢ E*(S). Now for a € S\ E*(S) there exists an
element r € S such that ar+ 1+ 1" = 1. Clearly, ar €I and also 1+ 1" € E*(S) C I. Thus 1 =
ar+ 141 €I and hence I=S.

Conversely, let S be a Clifford semiring which is full ideal-free. Let a € S be such that
a ¢ E*(S). Now Sa+ E*(S) is an ideal of S such that E*(S)GSa + E*(S). So Sa+ E*(S) =S.
Hence, 1=ra+e for some reS and e€E"(S). Then 1=1+1+1=
ra+e+1 +1=ra+ 1+ 1. Thus a is unit in S and consequently, S is a Clifford semifield.

Example 2.9. Let F be a field and D be a distributive lattice with 0 and 1. Then Fx D is a
Clifford semifield.

We conclude the section by noting the following two important results. The first of them fol-
lows from [5, Proposition (6.45)], and the second one is a consequence of the first result.
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Theorem 2.10. Let S be a commutative Clifford semiring with identity. Then for every full k-ideal I
of S, M,(I) is a full k-ideal of M,(S). On the other hand, for each full k-ideal ] of M,(S) there
exists a unique full k-ideal T of S such that ] = M, (T).

Theorem 2.11. If S is a Clifford semifield, then M, (S) is full k-ideal simple for any n € N.

3. Definitions and some earlier results of Leavitt path algebra

In this section, we discuss some basic concepts related to our study. We also mention some
results obtained earlier (by various authors) regarding Leavitt path algebras.

Initially, Leavitt path algebras were defined with their coefficients belonging to a field [2], and
then with their coefficients belonging to a commutative ring [15]. Later on, Katsov et al. [9] general-
ized the concept by defining Leavitt path algebras with coefficients in any commutative semiring.

Definition 3.1. ([9]) Let I' = (V,E,s,r) be a graph, S be a commutative semiring with 1 and 0
and E* be the set of formal symbols {e*|e € E}. The Leavitt path algebra Ls(I") of the graph I’
with coefficients in S is defined to be the Universal S-algebra generated by the set of generators
V UEUE* (where e — ¢* is a bijection between E and E* with r(e) = s(e*) and r(e*) = s(e), and
V,E,E* are pairwise disjoint), satisfying the following relations:

(Al) vw= 96, v forallv,we V;

(A2) s(e)e = e =er(e),r(e)e* = e* = e*s(e) for all e € E;
(CK1) e*f = d.sr(e) for all e,f € E;

(CK2) v =3 ci1(y €€ for any regular vertex v.

Elements of the set E* are called ghost edges, and elements of E are called real edges.
Any collection V U E U E* satisfying the conditions given in Definition 3.1 is called a Leavitt-I"
family in Lg(T").

Remark 3.2. Suppose I' = (V,E,s,r) is a graph, S is a commutative semiring and A is an S-
algebra generated by the three subsets {a,|v € V},{a.|e € E},{a.|e* € E*} of A for which the
following hold:

aydy = Oy ya, for all v,w € V;

As(e)Gc = Ae = Aely(e); Ar(e)Aer = A = Apdy(e) for all e € E,e* € E%
aeay = Ocpay) for all e, f € E;

a, = Zees,l(v) a.a, for any regular vertex v.

Ll NS

Then, there always exists a unique S-algebra homomorphism ¢ : Lg(I') — A given by ¢(v) =
ay, p(e) = a., p(e*) = a, for all v € V,e € E,e* € E*. The uniqueness of the Leavitt path algebra
associated to a graph I' and a semiring S follows from the universal property.

Remark 3.3. From the four defining relations of a Leavitt path algebra (given in Definition 3.1),
one can deduce the following regarding the product of the general elements of V U E U E*:

i. ef =er(e)s(f)f = Sre).s(r)ef> for any e, f € E.
ii. e'f" = dye)rpe’f for any e, f* € E".

Hence, the product of two edges e; and e; is nonzero if and only if ¢; and e; are adjacent in the
graph I'. Extending this to arbitrary number of edges ej,e,,...,e,, we can see that the product
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eie; ... e, is nonzero if and only if eje, - - - ¢, is path. Similarly, the product eje;_, ..
if and only if eje;_, --- e} is a ghost path.

From the defining relations of a Leavitt path algebra (given in Definition 3.1), one can also
deduce the following:

.e] is nonzero

Remark 3.4. (iii) ve = 0, e and ev = 0,,,(,)e for any v € V,e € E.
(iv) ve" = 0, (c)€” and e"v = d, y)e" for any v € V,e € E".
Hence, ve # 0 only when v = s(e); and ev # 0 only when v = r(e).

Remark 3.5. For a path p = eje, - - - e,,p* is defined as eje_, ---e]. It is easy to see that:

q if g=pq;
. _ ) r(p) if p=g;
0 otherwise.

We now recall the definition of local units. A semiring R is said to have a set of local units F
if F is a set of idempotent elements in R such that for each finite subset {ry,rs,...,7,} in R, there
exists an element f € F for which fr,f=r; for all 1 <i < n. In other words, a set of idempotents
Fin R is a set of local units for R if each finite subset of R is contained in a (unital) subsemiring
of the form fRf for some f € F. Katsov et al. gave the following important result regarding the
existence of units and local units in Lg(T).

Lemma 3.6. [9, Proposition 2.5] Let I' = (V,E,s,r) be an arbitrary graph and S be a commutative
semiring. Then Lg(I') is a unital S-algebra if V is finite; and if V is infinite, the set of all finite
sums of distinct elements of V is the set of local units of the S-algebra Ls(T").

In the following proposition, Katsov et al. showed that the elements of V U E U E* (for a graph
I') are all nonzero and also gave the general form of the monomials in Lg(I"), where S is a com-
mutative semiring.

Proposition 3.7. [9, Proposition 2.4] For a commutative semiring S and a graph I’ = (V,E,s,r),
the Leavitt path algebra Lg(T') has the following properties:

i. all elements of the set VU E U E* are nonzero;
ii. if a, b are distinct elements in S, then av # bv for all v € V;
ili. every monomial in Lg(I") is of the form Apq*, where 2 € S and p, q are paths in I such

that r(p) = r(q).
The following result is interesting to note.

Proposition 3.8. Let S be a commutative semiring and T = (V,E,s,r) be a graph. Let ¢ be a cycle
in I which has no exit. If c is based at some vertex v then

vLg(T)v = { Z kic'|m,n € No,k; € S for i = —m, ,n}

where ¢* = (¢*)' forall t €N, and &® = v.

Proof. Let A={>_"  kic'lm,n € Ny, k; €S for i = —m,...,n}. Now A C vLg(T")v, as each cycle

given by some poweiriof ¢ begins and ends at v. We note that the elements of vLg(I")v are linear
combinations of the elements of form af*, where o, f € E®) s(a) = s(f) = v and r(a) = r(B).
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Now as ¢ is without exits, any path p in I" with s(p) = v must be of the form ¢"p’ where n > 0 and p’ is
an initial subpath of ¢ (clearly, if p contains any edge which is not an edge of ¢ then that would give an
exit in ¢). Thus & = ¢"o/ and f = ¢" B’ for some m,n > 0. As o, B’ are subpaths of c and r(¢/) = r(f),
we must have that o = f8'. Let o = eje;...ex. For any edge e of ¢, e is the only vertex that has s(e) as its
source (since c is without exits). Thus, from the condition (CK2), we have ee* = s(e) for any edge e in c.
Now o/ (f) =erer - erreefe; ,---€f = erer---ex_1s(ex)ef - € =ejey---ex_1€f_, - € =
- =¢eel =v. Thus aff* = "(o)(B) ¢ = ™vc" = ¢™(c*)". Now as ¢ has no exit, it is easy to see
that ¢c* =v. So aff* =™ ". This shows that vLg(I')v C A. Hence we have that vLg(T)v =
{>°L  kicllm,n € No,k; € S for i = —m,...,n}. O

Now we state some results which have been used for determining the condition for simplicity
of Lg(T") when S is a semifield. We recall that a monomial is a path in real edges (respectively,
path in ghost edges) if it contains no ghost edges (respectively, no real edges). A polynomial is in
only real edges (respectively, in only ghost edges) if it is a sum of real paths (respectively, ghost
paths). The following result proved useful in finding the condition for simplicity of Ls(I") when S
is a semifield. Recall that a commutative semiring S with 1 and 0 (with 1 # 0) is called a semi-
field if every nonzero element of S is a unit in S.

Theorem 3.9. [9, Lemma 3.2] Let I’ = (V,E,s,r) be a graph with the property that every cycle in
I' has an exit. If S is a semifield and o # 0 is a polynomial in only real edges then there exist
a,b € Lg(T") such that aob € V.

The condition for simplicity of Lg(I") was considered by Katsov et al. [9]. We recall the defini-
tions of hereditary and saturated subsets of the vertex set of a graph.

Definition 3.10. Consider a graph I' = (V,E,s,r). A subset H C V is called hereditary if s(e) €
H=1r(e)cH for all ecE; and HCV is called saturated if for any regular vertex
v, r(s"'(v)) CH=v€eH.

Obviously, § and V are both hereditary and saturated subsets of V.

The following result was established by Katsov et al. [9, Lemma 2.6], which is a generalization
of the analogous result obtained by Abrams and Pino for fields (cf. [3, Theorem 3.1]).

Lemma 3.11. [9, Lemma 2.6] Let I' = (V,E,s,r) be a graph, S be a commutative semiring, and [
be an ideal of Ls(I"). Then, INV is a hereditary and saturated subset of V.

Theorem 3.12. [9, Theorem 3.4] A Leavitt path algebra Ls(I") of a graph I' = (V, E, s, r) with coef-
ficients in a semifield S is simple if and only if both of the following conditions are satisfied:

i. The only hereditary and saturated subsets of V are § and V;
ii. Every cycle in I' has an exit.

Katsov et al. in fact settled the following problem: how far can the previous theorem be
extended for the commutative ground semiring S? They proved the following theorem giving a
necessary and sufficient condition for the simplicity of Lg(I") for a commutative semiring.

Theorem 3.13. [9, Theorem 3.5] The Leavitt path algebra Ls(T") of a graph I = (V,E,s,r) with
coefficients in a commutative semiring S is ideal-simple if and only if the following three conditions
are satisfied:

i. S is a semifield,
ii. The only hereditary and saturated subsets of V are § and V;
ili. Every cycle in I' has an exit.
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4. Leavitt path algebra Ls(I") over a Clifford semifield S

Now we study Leavitt path algebras over Clifford semifields. Before going into the formal defin-
ition, we consider S-semimodules and S-semialgebras for a Clifford semiring S.

Definition 4.1. Let S be a commutative Clifford semiring with 0 and 1. An S-semimodule over
the Clifford semiring S is a commutative inverse monoid (M,+) with 0 together with a scalar
multiplication (s,m)+—sm from SxM to M which satisfies the identities (s;5)m =
s1(sam), s(my + my) = smy + smy, (51 + s3)m = sym + sym, lm = m, s0p; = 0y = Om for all
s, 81,8 € Sand m,my;,my € M.

Definition 4.2. Let S be a commutative Clifford semiring with 0 and 1. Then (A, +,-) is said to
be an S-semialgebra (or simply S-algebra) over § if

(i) (A,+,-) is an additive inverse semiring with 0,

(i) (A, +) is an S-semimodule and

(iil) (sa)b = s(ab) = a(sb) for all s € S and a,b € A.

Example 4.3. Let S be a commutative Clifford semiring with 0 and 1. Then the matrix semiring
M, (S) of all nx n matrices over S is an additive inverse semiring such that ET(M,(S)) is a k-
ideal of M,(S).

Example 4.4. Let U be a set and S be a commutative Clifford semiring with 0 and 1. Let A be
the set of all mappings f: U — S. Define addition “+” and multiplication “” on A by (f +
g)(u) =f(u)+g(u) and (f - g)(u) = f(u)g(u) for all u € U. Then (A, +,-) is a semiring. First we
show that A is an additive inverse semiring. For this, let f € A, and we define a function f’:
U — S by f'(u) = (f(u))’ for all u € U. Then f' € A satisfies f +f' +f =f and f' +f +f =f".
Let g be any element of VT (f), where VT (f) is the set of all additive inverses of f. Then f + g+
f=f and g+ f + g = g This implies that for all u € U, we have f(u) + g(u) + f(u) = f(u) and
g(u) + f(u) + g(u) = g(u), that is, g(u) € VT (f(u)) in the semiring S. Since S is an additive
inverse semiring, we must have that g(u) = (f(u))’ = f'(u) for all u € U. Therefore, g = f.
Hence f’ is the unique additive inverse of f in A and hence A is an additive inverse semiring. For
s€ Sand f € A we define sf : U — S by (sf)(u) = sf(u) for all u € U. Then (A, +) is an S-semi-
module. Moreover, (sf)g = s(fg) = f(sg) for all s € S and f,g € A. Hence A is an S-semialgebra.
Now E*(A) is an ideal of A. To show that ET(A) is a k-ideal of A, let f,f + g € ET(A). Then for
all u € U, we have that f(u),f(u) + g(u) € ET(S). Since S is a Clifford semiring, E*(S) is a k-
ideal of S. This implies that g(u) € ET(S), that is, g(u) + g(u) = g(u) for all u € U. Therefore,
(g+g)(u) =g(u) for all u € U, that is, g+ g=g, that is, g € ET(A). Consequently, A is an addi-
tive inverse semiring such that E*(A) is a k-ideal of A.

Now we introduce the Leavitt path algebra of a graph I' over a Clifford semiring.

Definition 4.5. Let I' = (V,E,s,r) be a directed graph and S be a Clifford semiring. The Leavitt
path algebra Lg(I") of the graph T with coefficients in S is the S-algebra given by the set of gener-
ators VU EU E* (where e e* gives a bijection between E and E¥, and V,E, E* are pairwise dis-
joint sets) satisfying the following relations:

vu=20d,,vforalv,ueV;

s(e)e=e=er(e),r(e)e* = ¢ =e*s(e) forall e € E;
e'f = 0egr(e) for all e, f € E;

V=13 e (y €€ whenever v € V is a regular vertex.

Ll e
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Remark 4.6. It is easy to see that the mappings given by vi— v, for v € V, and e e*,e* — e for
e € E, produce an involution on the algebra Lg(I'); and for any path p = eje;...e, there exists
p*i=celel | ..ef. We see that the Leavitt path algebra Lg(I') can also be defined as the quotient
of the free S-algebra S = <v,e,e* | v € V,e € E,e* € E*> by the congruence “~” generated by

the following ordered pairs:

«

(vu, 0y uv) for all v,u € V,

ii. (s(e)e,e), (e er(e)), and (r(e)e*,e*), (e*,e*s(e)) for all e € E,
(e*f, 5efr( )) forall e,f € E,

(V.2 ees1(y) €€”) for all regular vertices v € V.

Remark 4.7. As shown in Proposition 4.8 next, all generators {v,e,e*|v € V,e € E,e* € E*} of
Lg(T") (for any graph I' = (V,E,s, r)) are nonadditive idempotents. Furthermore, from the above
remark, it readily follows that Lg(I") is, in fact, the “largest” algebra generated by the elements
{v,e,e*lve V,e € E,e* € E*} satistying the relations (1)-(4) of Definition 4.5. In other words,
Lg(I") has the following universal property: If A is an S-algebra generated by a family of elements
{ay,be,co|vE€ V,e € E,e* € E*} satisfying relations analogous to the relations (1)-(4) in
Definition 4.5, then there always exists an S-algebra homomorphism ¢ : Ls(I') — A given by

$(v) = ay, ¢(e) = b and ¢(e*) = ce-.

Proposition 4.8. If I' is a graph and S is a Clifford semiring with identity, then the Leavitt path
algebra Lg(I") has the following properties:

i. all elements of the set {v,e,e*|v € V,e € E} are nonadditive idempotents;
ii. if a, b are distinct elements in S, then av # bv for all v € V.

Proof. The proof given for the case of rings in [15, Proposition 3.4], which, in fact, uses a con-
struction similar to that of the case of fields from [6, Lemma 1.5], is based on Remark 4.7. One
needs to construct an S-algebra A as mentioned in Remark 4.7 having all generators
{ay,be,ce|[vE V,e € E,e* € E*} to be nonzero. It almost does not depend on the “abelianness”
used in the case of a ring. So it works in our semiring setting as well. Just for the reader’s con-
venience, we have decided to sketch it here.

Let I be an infinite set of cardinality at least |V U E|, and let Z := S() be a free S-semimodule
with the basis I, that is, Z is a direct sum of |I| copies of S. For each e € E, let A, := Z, and for
each v € V, let

Av — { 69ees*‘(v) Ae if s_l(v) 7é ¢;

Z if v is a sink

Note that all A.’s and A,’s are mutually isomorphic, since each of them is the direct sum of |I
copies of S. Let A :=@,cy A,. For each v € V define T, : A, — A, to be the identity map and
extend it to a homomorphism T, : A — A by defining T, to be zero on A © A,. Also, for each
e € E choose an isomorphism T, : A, — A, C Ay, and extend it to a homomorphism T, : A —
A by mapping it to zero on A © A,(,). Finally, we define T,. : A — A by taking the isomorphism
T, ' : A, C Ay) — Ay() and extending it to a homomorphism T, : A — A by letting T to be
zero on AGSA,. Now consider the subalgebra B of Homg(A,A) generated by
{T,, T, Te|v € V,e € E,e* € E*}. For each v € V we have A, = S®M for some S-semimodule
M. Then T,(1,0) + T,(1,0) = (1,0) + (1,0) = (2,0) # (1,0) = T,,(1,0). This implies that T, +
T, # T, and thus T, is not an additive idempotent. Similarly, we can prove that T, and T, are
also nonadditive idempotent elements for each e € E. Thus {T,, T., Te|[v € V,e € E,e* € E*} is a
collection of nonadditive idempotent elements satisfying the relations described in Definition 4.5.
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By the universal property of Lg(I"), it follows that the elements of the set {v,e,e*|lv € V,e €
E,e* € E*} are nonadditive idempotents and thus (i) is established. Next, let a, b be two distinct
elements in S. We have aT,(1,0)=T,(a,0)= (a,0) # (b,0) = T,(b,0) = bT,(1,0). So
aT, # bT,. The universal property of Lg(I") then implies that av # bv, and thus (ii) is estab-
lished. O

Now we concentrate on the properties of Leavitt path algebras defined over
Clifford semifields.

Proposition 4.9. Let I" be a graph with the property that every cycle in I has an exit, and let S be
a Clifford semifield. If o € Lg(I") is a polynomial in only real edges whose coefficients are all in
S\ ET(S), then there exist a,b € Lg(I") such that aob = Jv for some A € S\ ET(S) and v € V.

Proof. We write the polynomial o in the form o = )", 4;q;, where the g/s are distinct real paths
and 4; € S\ E*(S) for all i. From the set {g;}, we choose some p such that no proper prefix path
of p is contained therein. Let v=r(p). Then, using [9, Remark 2.7], we get
prov = Av+ >, Aip*qi, where the sum is taken over all g/’s that have p as a proper prefix path
and r(q;) = v, so that p*q; € CP(v). So writing p*ov as a;, we have that oy = v+ . | Aipss
where for each i, p; is a closed path based on v of positive length and 0 # 4 € S. As all coeffi-
cients of o are nonadditive idempotents, A is a nonadditive idempotent. Let some ¢ € CSP(v) be
fixed. For any p; € CP(v), one may write p; = ¢"p} with n; € N maximal, so that either p; = v or
pl is of the form dip! with d; € CSP(v),d; # c. In the latter case, (c*)""'p; = ¢*p, = c*dip! = 0 by
[9, Remark 2.7]. If n=max{nl|i=1,2,...,n}+1, then (c*)"pic"=p; if p;=c", and
(c*)"pic" = 0, otherwise. So (c*)"aic” = Av+ 37 2;c" with 1;>0. In other words, if (c*)"oc” is
denoted by o then o = Av+ cP(c) for some polynomial P. Now let ¢ =eje;---e,. By our
hypothesis and [2, Lemma 2.5], there exists an exit f € I" for c. Let s(f) = s(e;) with f # ¢;. Let
z=ejeej1--fejr1---e,. Then s(z)=v and z'c=0. Now z'd'z=2z"lvz+z*cP(c)z =
lz*vz = Jz*s(z)z = Az"z = Jr(z). Writing a = z*(c*)"p* and b = vc"z, we have that aob = Ar(z).
Thus aob = Av for some g, b and nonadditive idempotent A in S and some v € V. 0

Corollary 4.10. Let I be a graph with the property that every cycle in I has an exit. Also, let S be
a Clifford semifield. If a full k-ideal J in Lg(I") contains a nonadditive idempotent polynomial o in
only real edges, then ] contains a vertex.

Proof. Since « is not an additive idempotent polynomial, o must have some coefficient which is not an
additive idempotent. We write o« = ¢ + f3, where J contains those terms whose coefficients are nonaddi-
tive idempotents and f contains those terms whose coefficients are all additive idempotents. Now f§ €
ET(Ls(T")) C ] (since ] is a full ideal). So both § + /(= o) and f belong to J. As J is a full k-ideal, this
implies that 6 € J. Now 6 is a polynomial in only real edges whose coefficients are all nonadditive idem-
potents. By Proposition 4.9, we then have that there exist a,b € Lg(I") such that adb = Av for some
nonadditive idempotent /4 € S and some v € V. Now as 4 is a nonadditive idempotent, it is invertible in
S. So there exist r € S such that rA4+ 1+ 1" = 1. Hence riv+ (1 + 1')v = v. Now riv = radb € J.
Also, (1 + 1")v, being an additive idempotent, belongs to E*(Ls(I")) and hence it belongs to J. So v =
riv + (1 4 1’)v belongs to J. Thus J contains a vertex. 0

Now we consider the product of two nonadditive idempotent polynomials in Lg(I"). First we
have the following lemma.

Lemma 4.11. If S is a Clifford semifield, then the product of two nonadditive idempotents cannot
be an additive idempotent.
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Proof. Let a, b be two nonadditive idempotent elements in S. If possible, let ab=e be an additive
idempotent. Now as a is a nonadditive idempotent and S is a Clifford semifield, there exists r € S
such that ra + 1+ 1' = 1. So rab 4 (1 + 1')b = b. This implies that b = re + (1 4 1')b. Now re and
(1 4+ 1')b are both additive idempotents (since e and 1 4 1’ are additive idempotents), and hence b is
an additive idempotent. This is a contradiction. So ab cannot be an additive idempotent. O

Proposition 4.12. The product of two nonadditive idempotent polynomials in Lg(T") (where S is a
Clifford semifield and 1" is a graph) cannot be an additive idempotent polynomial.

Proof. Any polynomial in Lg(T") is the sum of some monomials of the form Apq*, where p, g are
paths in T with r(p) = r(q) and A € S. Let Py, P, be two nonadditive idempotent polynomials in
Ls(T). So there exists at least one monomial in P; such that the corresponding coefficient 1, is a
nonadditive idempotent element in S; and similarly P, contains a monomial such the correspond-
ing coefficient 4, is a nonadditive idempotent in S. Now in PP, the terms whose coeffiecients
have at least one additive idempotent (of S) will be additive idempotent monomials. However,
PP, clearly contains a term having coefficient 4;/4,. By Lemma 4.11, 4;/, is a nonadditive idem-
potent in S. So PP, has a monomial whose coefficient is nonadditive idempotent in S. From the
consideration of coefficients of the polynomials in Lg(T"), this shows that PP, is a nonadditive
idempotent polynomial. So the product of two nonadditive idempotent polynomials in Lg(I") can-
not be an additive idempotent polynomial. O

5. Full k-Simplicity of Ls(I')

In this section, we consider the conditions for full k-simplicity of Lg(I") of a graph I' over a
Clifford semifield S. For Leavitt path algebras defined over fields and semirings, the conditions
for ideal-simpleness were studied in detail (cf. [2,9]). Here we look for Clifford semifields and
graphs for which the corresponding Leavitt path algebras become full k-ideal simple.

Theorem 5.1. Let I be a graph and S be a Clifford semifield. Also, let ET(Lg(T')) be a k-ideal. If
x € Lg(T") and x ¢ E*(Ls(T")), then there exists y € E¥) such that xy ¢ E*(Ls(T')) and xy is a
polynomial in only real edges.

Proof. Let x = S kipiq;, where k; € S, p;,q; € E®). Suppose x & E*(Ls(I")). We choose a vertex
v €V such that xv & E*(Ls(")). It is easy to see that such a vertex v always exists as follows:
since x & ET(Ls(')), kipig; ¢ ET(Ls(T")) for some i=1,2,...,n, and for that i we have xv; =
kipig; ¢ ET(Ls(I")) where v; = s(q;). Now having chosen such a v, by regrouping terms (if
needed) we may write xv = "7, xjef + y, where ¢; € E™) with s(e;) = v,e; # ¢y for j#j and y
is a polynomial in only real edges. We assume that xv is represented as an element of minimal
degree in ghost edges. We now consider two cases.

Case I: Let xve; € E*(Lg(T')) for all j =1,2,...,m. Now xve; = Z]m:1 xje; ej + yej, which implies
that xve; = x; + yej; = f; (say). By our assumption, f; € E*(Ls(I")) for all j=1,2,...,m. Now
xi+ (r+y)e =fi+)e. So xjef + (Y + y)eje; = fie; + y'eje;. Then

m m m m m
xv 4+ (y—l—y’) Zejej* = ijej* + (y—l—)/) Zejej’f +y= Zﬁej* + Zy'ejef +y.
=1 =1 =1 =1 =1
Multiplying both sides by v, we get that xv+ (y+y) ZJ"’: L e€; = ZJW’:] fiei+

St Yee +yv =20 fier +y(O eer) +yv. Now  xv @ EN(Ls(D)), (v +5) X1, ¢jef €
E*(Ls(T)). As E*(Ls(T')) is a k-ideal, this implies that xv+ (y +y) 321", ¢jef & E*(Ls(I')). So
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S fie (2 ¢je;)' +v) does not belong to E*(Ls(I')). Now Y1 fie; is in EF(Ls(T)) (as
f; is idempotent), so y((3_7, ejej*)' +v) € Ef(Ls(T")). This shows that y & E*(Ls(T")) and
(E]”;l eje; ) +v & E*(Ls(T)). From the latter relation, we find that v # Z;":l eje;. So there exists
an edge f & {ei, e, ...,en} such that s(f)=v (since v=73" . ee’). Then, we have that
xvf = 2;11 xje]’.‘f + yf = yf. Clearly, yf is in real edges only and yf # 0. As y, f are both nonaddi-
tive idempotents (note that every edge of I" is a nonadditive idempotent in Lg(I") and hence f is
a nonadditive idempotent) and yf # 0, by Proposition 4.12 we have that yf is a nonadditive idem-
potent. Thus we have a y(=vf) such that xy is a nonadditive idempotent polynomial in only
real edges.

Case II: Suppose xve; € E*(Lg(I')) for some j = 1,2,...,m. Now xvej = x; + yej, and the num-
ber of ghost edges in xve; is strictly less than that of xv. If x; is a polynomial in only real edges
then we obtain the result by proceeding similarly to Case I (as x; is a nonadditive idempotent).
Otherwise we repeat the above process to reduce the number of ghost edges in each step until we
are left with a polynomial in only real edges (this process will terminate since the number of
ghost edges in xv is finite). O

Corollary 5.2. Let I' be a graph and S be a Clifford semifield such that E*(Ls(T")) is a k-ideal of
Ls(T). If ] is a nontrivial full k-ideal of Ls(T), then ] contains a nonadditive idempotent polyno-
mial in only real edges.

Proof. As ] is a nontrivial full k-ideal, E*(Ls(T"))&J. Thus J contains a nonadditive idempotent x.
Thus, from Theorem 5.1, it follows that ] contains a nonadditive idempotent polynomial xy (for
some 7) in only real edges. O

Theorem 5.3. Let I' = (V,E,s,r) be a graph such that every cycle in T has an exit. Let S be a
Clifford semifield. If ] is a nontrivial full k-ideal of Lg(T'), then JN\'V # @ and ] NV is a hereditary
and saturated subset of V.

Proof. From Corollary 5.2, ] contains a nonadditive idempotent polynomial in only real edges. So
by Corollary 4.10, JN'V # §. Also, JNV is a hereditary and saturated subset of V (cf. Lemma
3.11). O

Theorem 5.4. Let I' = (V,E,s,r) be a graph. Let S be a Clifford semifield such that E*(Lg(T)) is
a k-ideal of Lg(T'). Then Lg(T') is full k-ideal simple if and only if both the following conditions
are satisfied.

i. The only hereditary and saturated subsets of V are § and V.
ii. Every cycle in I' has an exit.

Proof. First, let the conditions (i) and (ii) hold. If possible, let J be a nontrivial full k-ideal of
Lg(T"). Then from Theorem 5.3, we have that J NV is a nonempty hereditary saturated subset of
V. By condition (i), we have that JNV =V, that is, V C J. So ] contains local units and conse-
quently, J = Lg(I"). This shows that Lg(I") has no nontrivial full k-ideal.

Conversely, let Lg(I') be free of nontrivial full k-ideals. By following the proof of [2,
Theorem 3.11] (which does not use the additive inverse of the ring setting and can therefore
be used for semirings also), we can show that §f and V are the only hereditary and saturated
subsets of V. Finally, let there exist some cycle ¢ (based on some vertex v) in I' such that ¢
has no exit. We show that I=<v+ >+ EH(Lg(I')), which is the k-closure of
<v+c>+E"(Ls(T')), is a nontrivial full k-ideal of Lg(I'). Clearly, E*(Ls(I")) is properly
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contained in I. We show that v & I. If possible, let v € I. Then there exist monic monomials
%, i 7j, 0j such that

V+Zkoc (v+opi+f= Z /]v+c5+g CEE))

where k;,[j € Sfori=1,2,....,m,and j=1,2,....n, and f,g € E"(Lg(I")). It is easy to see that we
can take f=g (if f # g, we add first f and then g to both sides of (x * %) to get an idempotent
f+ g on both sides). Now noting that v(v 4 ¢)v = v + ¢, we can assume that (by multiplying both
sides by v if necessary) voyv = oy, vfv = f; for i=1,2,...,n, and vyv =7; and vo;v = 9; for
j=1,2,...,m. This shows that the monomials o;, §;, y;, 5 are elements of VLS(F)V By Proposition
3.8, it then follows that (noting that v = ¢® and also that (v + ¢) commutes with ¢ and ¢*) both
Sor k(v 4 ¢)B; and Z]:l i7;(v + ¢)d; are products of some polynomial in ¢, c* with (v+¢). So
we have that

V(v )P, )+ f = (v 0)Qle, ") (¥ % %)

(unless vfv =0 in which case the term f vanishes from both sides and we take f=0 in that case).
Writing (¢*)" =c¢ ™" for any n €N, let Q(c,c*) =b_pc ™+ -+ b_1c ' +byv+ byt +- -+
by and P(c,c*) = a_,c" + - +a_jc ' +av+aic' + - +ac’, where a; # 0 for i = —n, ...t

and b; # 0 for i = —m, ..., y. From (x * %x), we then have
—1 t
a_,c "+ ( Z (ai—1 +ai)ci> +(Q+4+aq+a +fliv+ (Z(al 1+ ai)c ) + a,ctt
i=—n+1 i=1
=b_,c™+ ( Z (b,;l + bi)Cl> + (b,l + by +f)1/ + (Z(bll + h,’)Cl> + b),Cy+1
i=—m+1 i=1

Comparing both sides, we have that m =n and t=y. Then, comparing the coefficients of the
negative powers of ¢, we have that

Ay =b_, - (x%x—nx%x)
A_p+a 1 =b_p+b 1 - (kx—n+1x%)
A pp1Fa 2 =bpy+b oy o (kx—n42x%)

A ppa+a s =b_nis+b iz - (kx—n-+3xx%)

as+a,=b_s3+b_y - (xx—2%x%)
a_2+a_1:b_2+b_1 (**—1**)

Now putting a_, = b_, in (¥ * —n+ 1% %), we have that a_, +a_,41 = a_, + b_,41. Next,
adding a_y to both sides of (k% —n+ 2 % %), we have that
an,+a 1 +ap2=a,+b_y1+b_,5 Hence we have that x_,+a_, =%, +b_ .,
where x_, =a_, + a_,41. Adding x_, to both sides of (x % —n + 3 % %) we have that x_,; +
A_pt3 = X_np1 + b_p+3 where x_, 11 =x_, +a_, 5. Proceeding this way, we obtain that x_, +
a_y =x_4+b_, from (¥*—2x%x). So adding x_4 to both sides of (** —1x%x), we get that
a+a_y =a-+b_,, where a = x_4 + a_, (which is in fact equal to a_, + a_,+1 + - -+ + a_p).

Now comparing the coefficients of the positive powers of ¢ in (* * %), we have that

ar=b; - (kxtxx)
a[+a[71:b[+bt,1 (**t_l**)

a1+ a2 =>br 1 +b s o (ke E=2 % %)

ay+ag=>by+by - (kx0%x%)
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Figure 1. Finite line graph I,

Now exactly in the same manner as we did with the earlier equations, we obtain from equa-
tions (k * ¢ % %) to (% * 0% x) that b+ a9 = b+ by where b =a,+a;—1 + -+ - + a;. Now compar-
ing the constant terms in both sides of (* * %), we get that

(I+ap+a 1 +f)iv=(bo+b_1+f)v - (x*x%xxx)
Adding (b + a)v to both sides of (x * * * ), we get that
(1+(b+ag)+ (a+an)+f)v=((b+by)+ (a+b_y)+f)v

Now as a+a_y =a+b_; and b+ ay = b+ by, we have that v+ dv+f =dv+f (note that
fv=f), where d=b+ap+a+a_,. Clearly, dv+f #0 (if f #0, then dv+f =0 implies that
0=dv+f=dv+f+f =/, which is a contradiction; again if f=0, then dv + f = 0 implies that
dv =0, which is a contradiction by Proposition 4.8(ii)). So (dv + f)" exists. We add (dv + f)' to
both sides to get that v+ h+HW =h-+Hh (where h=dv+f). Now h+h € ET(Ls(I')). As
Et(Ls(T)) is a k-ideal, v+h+H and h+H both belonging to ET(Ls(I')) implies that
v € ET(Lg(T")). This is a contradiction (by Proposition 4.8(i)). So v & I and thus I is a full k-ideal
of Lg(T") which is not equal to Lg(T"). This is a contradiction to our assumption. Hence every
cycle in I' must have an exit. This completes the proof. O

We finish this section by demonstrating the use of Theorem 5.4 in reestablishing the full k-
simplicity of the Leavitt path algebra of the finite line graph I',, (Figure 1).

It is known that Lg(T,,) is isomorphic to M,(S). By Theorem 2.11, M, (S) is a full k-simple
algebra. However, this fact can also be justified by Theorem 4.6, since it is easy to check that the
finite line graph satisfies conditions (i) and (ii) mentioned in Theorem 5.4.

6. Uniqueness theorem for Clifford semifields

Regarding Leavitt path algebras, an important aspect is the Uniqueness theorem (also known as
the Cuntz-Krieger Uniqueness theorem). First, we state the Uniqueness theorems for Leavitt path
algebras defined respectively over commutative rings with 1 and fields.

Theorem 6.1. (The Cuntz-Krieger Uniqueness theorem, [15, Theorem 6.5]) Let every cycle in a
graph T have an exit, and let R be a commutative ring with 1. If S is a ring and f : Lg(T') — S is
a ring homomorphism with the property that f(rv) # 0 for all v € V and for all r € R—{0}, then f
is injective.

Corollary 6.2. [15, Corollary 6.6] Let I be a graph such that every cycle in I has an exit, and let
K be a field. If S is a ring and f : Lx(T') — S is a ring homomorphism with the property that f(v) /
=0 for all v € V, then f is injective.

In this section, we attempt to extend this theorem for Lg(I") when § is a Clifford semifield.
We first give the following definitions.

Definition 6.3. Let S and T be two Clifford semirings. Let f : S — T be a mapping. f is called a
c-homomorphism if f(a+b) = f(a) +f(b),f(ab) = f(a)f(b),f(0) =0,f(1) =1, and f maps

additive idempotent elements of S into additive idempotent elements of T.
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Definition 6.4. Let S and T be two Clifford semirings. Let f : S — T be a c-homomorphism. The
c-kernel of f is the subset of S defined as: cker(f) = {x € S|f(x) is an additive idempotent of T}.

Definition 6.5. Let S and T be two Clifford semirings. Let f : S — T be a c-homomorphism. f is
called c-injective if for any a,b € S,f(a) = f(b) implies that a +e=b+ e for some additive
idempotent e € 8.

Now we give the following result for c-homomorphisms which is similar to the Cuntz-Krieger
Uniqueness theorems.

Theorem 6.6. Let I' = (V,E,r,s) be a graph such that every cycle in T has an exit. Suppose S is a
Clifford semifield such that E*(Ls(T')) is a k-ideal of Ls(T'). Let T be a Clifford semiring. If f is a
c-homomorphism from Lg(I') to T with the property that f(v) is not an additive idempotent for any
v €V, then f is c-injective.

Proof. If possible, let cker(f) # E*(Ls(T")). If e € E*(Ls(T')), then as fis a c-homomorphism, we
have that f(e) is an additive idempotent in T, that is, e € cker(f). Thus, E*(Ls(I')) C cker(f). So
if possible, let ET(Ls(I")) be a proper subset of cker(f). Let x € cker(f) \ E*(Ls(I")). Then by
Theorem 5.1, there exists some 7 € E®) such that xy is a nonadditive polynomial in cker(f) in
only real edges. Now as cker(f) is a full k-ideal, this implies that cker(f) contains a vertex (by
Corollary 4.10). Let v be such a vertex. Then, flv) is an idempotent, which contradicts our
assumption that f(V) N E*(T) = @. Thus cker(f) = E*(Ls(T')). Let a,b € Lg(T") such f(a) = f(b).
Then f(a+ V') =f(a) +f(V') =f(b) +f (V') =f(b+ V). As b+ ¥ is an additive idempotent and
fis a c-homomorphism, f(b+ V') is an additive idempotent. So f(a + ') is an additive idempo-
tent. Hence a+ V' € (cker(f) =) ET(Ls(I')). So there exists d € ET(Lg(T")) such that a+ V' = d.
Then a+ b +b=d+b=">b+d. So we have found idempotents u (=b+b'),v (= d) such that
a+u=>b+v. Now u—+v, being the sum of two additive idempotents, is an additive idempotent.
So, at+ut+u=b+v+u=atu=btut+v=atut+v=btutv+v=atutv=
b+ u+ v. Thus f(a) = f(b) implies that a + w = b + w for an additive idempotent w (= u + v).
Hence, f is c-injective. O
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