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Leavitt path algebras with coefficients in a Clifford semifield
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ABSTRACT
In this article, we define the Leavitt path algebra LSðCÞ of a directed graph
C with coefficients in a Clifford semifield S. The general properties of LSðCÞ
are briefly discussed. Then, concentrating on the full k-simplicity (that is,
the property of having no nontrivial full k-ideals), we find the necessary
and sufficient condition for full k-simplicity of LSðCÞ of a directed graph C
over a Clifford semifield S. Also, we introduce c-homomorphisms of Leavitt
path algebras over Clifford semifields and establish a version of the (Cuntz-
Krieger) Uniqueness theorem for the Clifford semifield setting.
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1. Introduction

Leavitt path algebra has emerged as one of the most engaging fields of study in recent times.
Ever since it was introduced by Abrams and Pino in their seminal article [2], several mathemati-
cians have extensively worked in this new topic. Having its roots in the Leavitt algebras (a class
of K-algebras universal with respect to an isomorphism property between finite-rank free mod-
ules, where K is a field) introduced by Leavitt [10] in 1962, Leavitt path algebra is also significant
from an analytical perspective as it connects graph C�-algebras and Leavitt algebras. In fact,
obtaining a more complete algebraic picture of the different C�-algebras (for example, the
C�-algebra OA of a finite matrix A, or the Cuntz–Krieger algebra C�ðEÞ for a finite graph E) was
a motivation behind the introduction of the Leavitt path algebra.

Abrams and Pino defined the Leavitt path algebra LKðEÞ of a directed graph E with coefficients
in a field K. Clearly, this associates algebraic structures with graphs and, therefore, involves both
graph theory and algebra. Later, Leavitt path algebras have been generalized when they were
defined over rings (by M. Tomforde, cf. [15]) and over commutative semirings (by Katsov et al.,
cf. [9]). Abrams and Pino found that LKðEÞ can be realized as an algebra of the form CKAðKÞ
(the latter being the algebraic analog of OA), and also that the completion of LCðEÞ is virtually
same as C�ðEÞ. This motivated several researchers to look into the structure and properties of
Leavitt path algebras in more details (cf. [1]).

In this article, we introduce the Leavitt path algebra LSðCÞ of a directed graph C with coeffi-
cients in a Clifford semifield S. Clifford semifields are a particular kind of semirings. We consider
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the general properties of the Leavitt path algebras over Clifford semifields (after discussing the
basic notions regarding Clifford semifields in Section 2 and earlier results about Leavitt path alge-
bras in Section 3). One observes that a topic of central interest of studying Leavitt path algebras
so far has been to consider their simplicity or ideal-simpleness. Abrams and Pino, Katsov et al.
and Tomforde all gave precedence to this aspect of Leavitt path algebras in their works. Keeping
this in mind, we concentrate on the full k-simplicity of LSðCÞ of a directed graph C over a
Clifford semifield S. To be precise, we find the conditions (pertaining to the properties of S and
C) which are necessary and sufficient for LSðCÞ such that the latter does not possess a particular
kind of ideals viz., full k-ideals (except the trivial ones). Another interesting aspect regarding the
homomorphisms defined on Leavitt path algebras is the Uniqueness theorem (also known as the
Cuntz–Krieger Uniqueness theorem). We introduce a special type of homomorphism called a c-
homomorphism on Leavitt path algebras over Clifford semifields and establish a version of the
Uniqueness theorem with regards to c-homomorphisms.

We now give some basic definitions and terminology regarding graphs.

Definition 1.1. A directed graph C ¼ ðV;E; r; sÞ consists of two sets V and E, and two maps
r; s : E ! V. The elements of V are called vertices and the elements of E are called edges. For any
edge e in V, s(e) is the source of e and r(e) is the range of e. If s(e)¼ v and r(e)¼w, then we say
that v emits e and w receives e. Informally, we can think of e as having direction from v to w. If
rðe1Þ ¼ sðe2Þ for some edges e1; e2 2 E, we say that e1 and e2 are adjacent.

In this article, the word “graph” will denote a directed graph unless otherwise mentioned.
Clearly, for any vertex v in V, s�1ðvÞ is the set of all edges whose source is v, while r�1ðvÞ is the
set of all edges whose range is v. If v does not emit any edges (that is, if s�1ðvÞ ¼ 0=), we call v a
sink whereas a vertex v is called regular if 0<js�1ðvÞj<1. A graph G is row-finite if js�1ðvÞj<1
for all vertices v of G. Abrams and Pino initially defined the Leavitt path algebras for row-finite
graphs only. Later, they generalized the definition for any directed graph [3].

A path p ¼ e1e2 � � � en in a graph is a sequence of edges e1; e2; :::; en such that rðeiÞ ¼ sðeiþ1Þ
for i ¼ 1; 2; :::; n�1. A path is of length n if it consists of n edges. The source of p, denoted by
s(p), is defined to be the source of its initial edge sðe1Þ; while (if p has finite length) the range of
p, denoted by r(p), is the range of its final edge rðenÞ. A vertex v 2 V is considered as being a
path of length 0, with sðvÞ ¼ v ¼ rðvÞ. The set of all paths in C is denoted by Eð�Þ. A path p is
called a closed path based at v if sðpÞ ¼ rðpÞ ¼ v. Again, a closed path based at v is called a closed
simple path at v if sðeiÞ 6¼ v for every i> 1. CP(v) denotes the set of all closed paths based at v,
and the set of all closed simple paths based at v is denoted by CSP(v). A cycle is a closed simple
path which does not visit any of its vertices (except v) more than once. Thus, a path p is a cycle
if sðpÞ ¼ rðpÞ and sðeiÞ 6¼ sðejÞ for all i 6¼ j. If c is a cycle with sðcÞ ¼ rðcÞ ¼ v, then c is said to be
based at v. A graph containing no cycle is called acyclic. Finally, an edge e is an exit to a cycle
p ¼ e1e2 � � � en if there exists some i 2 f1; 2; :::; ng such that sðeiÞ ¼ sðeÞ but e 6¼ ei.

2. Basic notions regarding Clifford semifields

A semiring is an algebraic system ðS;þ; �Þ consisting of a nonempty set S together with two bin-
ary operations “þ” and “�” on S, respectively called addition and multiplication, such that ðS;þÞ
and ðS; �Þ are semigroups which are connected by ring-like distributivity, that is,
aðbþ cÞ ¼ abþ ac, and ðaþ bÞc ¼ acþ bc for all a; b; c 2 S.

A zero of a semiring S is an element 0 2 S such that aþ 0 ¼ 0þ a ¼ a and a � 0 ¼ 0 � a ¼ 0
for all a 2 S. An identity of a semiring S is an element 1 2 S such that a � 1 ¼ 1 � a ¼ a for all
a 2 S. The zeroid of a semiring ðS;þ; �Þ is the set of all a in S such that aþ b¼ b or bþ a¼ b for
some b 2 S. The set of all additive idempotents of a semiring S will be denoted by EþðSÞ. Thus
EþðSÞ ¼ fa 2 Sjaþ a ¼ ag. Similarly, the set of all multiplicative idempotents is denoted by
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E�ðSÞ. A semiring S is said to be additively (respectively, multiplicatively) idempotent if ðS;þÞ
(respectively, ðS; �Þ) is a band. If S is both additively and multiplicatively idempotent, then we call
it an idempotent semiring.

A semiring S is said to be additively (respectively, multiplicatively) commutative if ðS;þÞ
(respectively, ðS; �Þ) is a commutative semigroup. If S is both additively and multiplicatively com-
mutative, then it is called a commutative semiring. For notations and definitions regarding semir-
ings, we refer the reader to [5,7].

Now we discuss the motivation which led to the definition of the structure called a Clifford
semifield. It is known that commutative rings with 1 which are free of ideals (that is, for which
the only ideals are “trivial”) are fields. In the theory of semirings various generalizations of fields
are obtained by considering the semirings which are free from different types of ideals and con-
gruences. We give the definitions of ideal and k-ideal here.

Definition 2.1. [11] Let S be a semiring.

1. A nonempty subset A of S is called an ideal of S if Aþ A � A, and SA � A;AS � A.
2. An ideal A of S is called a k-ideal of S if for any x; y 2 S; x 2 A and either xþ y 2 A or yþ

x 2 A imply y 2 A (Golan in [5] called such an ideal to be subtractive).
3. An ideal A of S is called a full ideal of S if EþðSÞ � A.

Homomorphisms of semirings are defined in the usual way. Let S and T be two semirings. A
mapping f : S ! T is called a homomorphism of S into T if f ðxþ yÞ ¼ f ðxÞ þ f ðyÞ and f ðxyÞ ¼
f ðxÞf ðyÞ for all x; y 2 S. Let S and T be two semirings with zero. A homomorphism f : S ! T
is called a homomorphism of semirings with zero if it preserves the zero element, that is,
f ð0Þ ¼ 0. The kernel of a homomorphism f, denoted by kerf , is defined to be the set
kerf ¼ fx 2 Sjf ðxÞ ¼ 0g. It can be shown that kerf is a k-ideal for any homomorphism f (possibly
the “k” in k-ideal stands for the word “kernel”). We define

�A ¼ fx 2 Sjxþ y ¼ z or yþ x ¼ z for some y; z 2 Ag

and �A is called the k-closure of A. For any ideal I of S, the smallest k-ideal containing I is called
the k-closure of I. Thus, an ideal I of S is a k-ideal if and only if �I ¼ I.

The semiring S itself and the zero ideal (0) (if S has a zero) are considered as trivial ideals of
S. These ideals are also k-ideals. S is said to be simple (respectively, k-simple) or simply ideal-free
(respectively, k-ideal-free) if the only ideals (respectively, the k-ideals) of S are the trivial ones.

In order to study the generalizations of fields, it is natural to first consider the class of semir-
ings which are natural generalization of fields from the viewpoint of ring theory. The first such
generalization is a semifield which is defined below.

Definition 2.2. An additively commutative semiring ðS;þ; �Þ containing 1 and satisfying jSj � 2
is called a semifield if ðS�; �Þ is a subgroup of ðS; �Þ.

We call a semiring ðS;þ; �Þ an additive inverse semiring if ðS;þÞ is an additive inverse semi-
group, that is, for each a 2 S, there is a unique a0 2 S such that a ¼ aþ a0 þ a; a0 ¼ a0 þ aþ a0.
Additive inverse semirings were first studied by Karvellas [8] in 1974. For an additive inverse
semiring ðS;þ; �Þ, Karvellas proved the following theorem.

Theorem 2.3. Let S be an additive inverse semiring. Then for any a; b 2 S and e 2 EþðSÞ we have
(i) ða0Þ0 ¼ a, (ii) ab0 ¼ ðabÞ0 ¼ a0b (iii) ab ¼ a0b0 and (iv) e0 ¼ e.

The introduction of the concept of relative inverses in semigroups by A. H. Clifford (not to be
confused with W. K. Clifford after whom Clifford Algebra is named) led to the study of com-
pletely regular semigroups. For semirings, Sen, Maity, and Shum laid the axiomatic formulation

COMMUNICATIONS IN ALGEBRAVR 3



for completely regular semirings (cf. [12]). Completely regular semirings are disjoint unions of
skew-rings (the latter being structures which have all the properties of rings except the additive
commutativity). Also, Sen et al. (cf. [14]) characterized semirings which are distributive lattices of
skew-rings and called them Clifford semirings (note that Ghosh [4] introduced Clifford semirings
as strong distributive lattices of rings). In [13], Sen, Maity, and Shum introduced Clifford semi-
fields. The definitions of Clifford semirings and Clifford semifields are given below.

Definition 2.4. A semiring S is called a Clifford semiring if it is an additive inverse semiring
such that for every a 2 S its inverse a0 satisfies

aþ a0 ¼ a0 þ a and a aþ a0ð Þ ¼ aþ a0

and EþðSÞ is a distributive sublattice as well as a k-ideal of S.
Throughout the article, we assume that all the Clifford semirings contain 0.

Theorem 2.5. [14, Theorems 3.2 and 3.3] Let S be a semiring. Then the following conditions
are equivalent:

i. S is a Clifford semiring;
ii. S is an additive inverse semiring satisfying for all a; b 2 S; aþ a0 ¼ a0 þ a; aðaþ a0Þ ¼ aþ a0;

ðaþ a0Þb ¼ bðaþ a0Þ; and aþ ðaþ a0Þb ¼ a; where a0 is the additive inverse of a, and if
aþ d¼ d for some d 2 S, then that implies aþ a¼ a;

iii. S is a strong distributive lattice of skew-rings.

Definition 2.6. Let S be a Clifford semiring with 1 such that 1 62 EþðSÞ. A nonadditive idempo-
tent element a 2 S is said to be left invertible if there exists an element r 2 S such that
raþ 1þ 10 ¼ 1. In this case, r is called a left inverse of a. Similarly, we can define a right invert-
ible element in a Clifford semiring. An element is said to be invertible if it is left invertible as
well as right invertible. If a is invertible, we say that a is a unit of S.

Definition 2.7. A Clifford semiring S is called a Clifford semifield if
(i) 1 2 S such that 1 62 EþðSÞ,
(ii) S is commutative and
(iii) every nonadditive idempotent element of S is a unit.

Theorem 2.8. A commutative Clifford semiring S with 1 is a Clifford semifield if and only if S is
full ideal-simple.

Proof. First, suppose that S is a Clifford semifield and let I be an ideal of S such that EþðSÞ$I.
Then there exists an element a 2 I such that a 62 EþðSÞ. Now for a 2 S n EþðSÞ there exists an
element r 2 S such that ar þ 1þ 10 ¼ 1. Clearly, ar 2 I and also 1þ 10 2 EþðSÞ � I. Thus 1 ¼
ar þ 1þ 10 2 I and hence I¼ S.

Conversely, let S be a Clifford semiring which is full ideal-free. Let a 2 S be such that
a 62 EþðSÞ. Now Saþ EþðSÞ is an ideal of S such that EþðSÞ$Saþ EþðSÞ. So Saþ EþðSÞ ¼ S.
Hence, 1 ¼ raþ e for some r 2 S and e 2 EþðSÞ. Then 1 ¼ 1þ 10 þ 1 ¼
raþ eþ 10 þ 1 ¼ raþ 1þ 10. Thus a is unit in S and consequently, S is a Clifford semifield. w

Example 2.9. Let F be a field and D be a distributive lattice with 0 and 1. Then F	D is a
Clifford semifield.

We conclude the section by noting the following two important results. The first of them fol-
lows from [5, Proposition (6.45)], and the second one is a consequence of the first result.
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Theorem 2.10. Let S be a commutative Clifford semiring with identity. Then for every full k-ideal I
of S, MnðIÞ is a full k-ideal of MnðSÞ. On the other hand, for each full k-ideal J of MnðSÞ there
exists a unique full k-ideal T of S such that J ¼ MnðTÞ.

Theorem 2.11. If S is a Clifford semifield, then MnðSÞ is full k-ideal simple for any n 2 N.

3. Definitions and some earlier results of Leavitt path algebra

In this section, we discuss some basic concepts related to our study. We also mention some
results obtained earlier (by various authors) regarding Leavitt path algebras.

Initially, Leavitt path algebras were defined with their coefficients belonging to a field [2], and
then with their coefficients belonging to a commutative ring [15]. Later on, Katsov et al. [9] general-
ized the concept by defining Leavitt path algebras with coefficients in any commutative semiring.

Definition 3.1. ([9]) Let C ¼ ðV;E; s; rÞ be a graph, S be a commutative semiring with 1 and 0
and E� be the set of formal symbols fe�je 2 Eg. The Leavitt path algebra LSðCÞ of the graph C
with coefficients in S is defined to be the Universal S-algebra generated by the set of generators
V [ E [ E� (where e ! e� is a bijection between E and E� with rðeÞ ¼ sðe�Þ and rðe�Þ ¼ sðeÞ, and
V;E;E� are pairwise disjoint), satisfying the following relations:

(A1) vw ¼ dv;wv for all v;w 2 V;
(A2) sðeÞe ¼ e ¼ erðeÞ; rðeÞe� ¼ e� ¼ e�sðeÞ for all e 2 E;
(CK1) e�f ¼ de;f rðeÞ for all e; f 2 E;
(CK2) v ¼Pe2s�1ðvÞ ee

� for any regular vertex v.

Elements of the set E� are called ghost edges, and elements of E are called real edges.
Any collection V [ E [ E� satisfying the conditions given in Definition 3.1 is called a Leavitt-C

family in LSðCÞ.
Remark 3.2. Suppose C ¼ ðV;E; s; rÞ is a graph, S is a commutative semiring and A is an S-
algebra generated by the three subsets favjv 2 Vg; faeje 2 Eg; fae� je� 2 E�g of A for which the
following hold:

1. avaw ¼ dv;wav for all v;w 2 V;
2. asðeÞae ¼ ae ¼ aearðeÞ; arðeÞae� ¼ ae� ¼ ae�asðeÞ for all e 2 E; e� 2 E�;
3. ae�af ¼ de;f arðeÞ for all e; f 2 E;
4. av ¼

P
e2s�1ðvÞ aeae� for any regular vertex v.

Then, there always exists a unique S-algebra homomorphism / : LSðCÞ ! A given by /ðvÞ ¼
av;/ðeÞ ¼ ae;/ðe�Þ ¼ ae� for all v 2 V; e 2 E; e� 2 E�. The uniqueness of the Leavitt path algebra
associated to a graph C and a semiring S follows from the universal property.

Remark 3.3. From the four defining relations of a Leavitt path algebra (given in Definition 3.1),
one can deduce the following regarding the product of the general elements of V [ E [ E�:

i. ef ¼ erðeÞsðf Þf ¼ drðeÞ;sðf Þef , for any e; f 2 E.
ii. e�f � ¼ dsðeÞ;rðf Þe�f � for any e�; f � 2 E�.

Hence, the product of two edges ei and ej is nonzero if and only if ei and ej are adjacent in the
graph C. Extending this to arbitrary number of edges e1; e2; :::; en, we can see that the product
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e1e2 ::: en is nonzero if and only if e1e2 � � � en is path. Similarly, the product e�ne
�
n�1 ::: e

�
1 is nonzero

if and only if e�ne
�
n�1 � � � e�1 is a ghost path.

From the defining relations of a Leavitt path algebra (given in Definition 3.1), one can also
deduce the following:

Remark 3.4. (iii) ve ¼ dv;sðeÞe and ev ¼ dv;rðeÞe for any v 2 V; e 2 E.
(iv) ve� ¼ dv;rðeÞe� and e�v ¼ dv;sðeÞe� for any v 2 V; e 2 E�.
Hence, ve 6¼ 0 only when v ¼ sðeÞ; and ev 6¼ 0 only when v ¼ rðeÞ.

Remark 3.5. For a path p ¼ e1e2 � � � en; p� is defined as e�ne
�
n�1 � � � e�1. It is easy to see that:

p�q ¼
q0 if q ¼ pq0;
r pð Þ if p ¼ q;
p0� if p ¼ qp0;
0 otherwise:

8>><
>>:

We now recall the definition of local units. A semiring R is said to have a set of local units F
if F is a set of idempotent elements in R such that for each finite subset fr1; r2; :::; rng in R, there
exists an element f 2 F for which fri f¼ ri for all 1 
 i 
 n. In other words, a set of idempotents
F in R is a set of local units for R if each finite subset of R is contained in a (unital) subsemiring
of the form fRf for some f 2 F. Katsov et al. gave the following important result regarding the
existence of units and local units in LSðCÞ.

Lemma 3.6. [9, Proposition 2.5] Let C ¼ ðV;E; s; rÞ be an arbitrary graph and S be a commutative
semiring. Then LSðCÞ is a unital S-algebra if V is finite; and if V is infinite, the set of all finite
sums of distinct elements of V is the set of local units of the S-algebra LSðCÞ:

In the following proposition, Katsov et al. showed that the elements of V [ E [ E� (for a graph
C) are all nonzero and also gave the general form of the monomials in LSðCÞ, where S is a com-
mutative semiring.

Proposition 3.7. [9, Proposition 2.4] For a commutative semiring S and a graph C ¼ ðV; E; s; rÞ,
the Leavitt path algebra LSðCÞ has the following properties:

i. all elements of the set V [ E [ E� are nonzero;
ii. if a, b are distinct elements in S, then av 6¼ bv for all v 2 V;
iii. every monomial in LSðCÞ is of the form kpq�, where k 2 S and p, q are paths in C such

that rðpÞ ¼ rðqÞ.

The following result is interesting to note.

Proposition 3.8. Let S be a commutative semiring and C ¼ ðV;E; s; rÞ be a graph. Let c be a cycle
in C which has no exit. If c is based at some vertex v then

vLS Cð Þv ¼
Xn
i¼�m

kic
ijm; n 2 N0; ki 2 S for i ¼ �m; :::; n

( )

where c�t ¼ ðc�Þt for all t 2 N, and c0 ¼ v.

Proof. Let A ¼ fPn
i¼�m kicijm; n 2 N0; ki 2 S for i ¼ �m; :::; ng. Now A � vLSðCÞv, as each cycle

given by some power of c begins and ends at v. We note that the elements of vLSðCÞv are linear
combinations of the elements of form ab�, where a; b 2 Eð�Þ; sðaÞ ¼ sðbÞ ¼ v and rðaÞ ¼ rðbÞ.
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Now as c is without exits, any path p in C with s(p)¼ v must be of the form cnp0 where n � 0 and p0 is
an initial subpath of c (clearly, if p contains any edge which is not an edge of c then that would give an
exit in c). Thus a ¼ cma0 and b ¼ cnb0 for some m; n � 0. As a0; b0 are subpaths of c and rða0Þ ¼ rðb0Þ,
we must have that a0 ¼ b0. Let a0 ¼ e1e2:::ek. For any edge e of c, e is the only vertex that has s(e) as its
source (since c is without exits). Thus, from the condition (CK2), we have ee� ¼ sðeÞ for any edge e in c.
Now a0ðb0Þ� ¼ e1e2 � � � ek�1eke�ke

�
k�1 � � � e�1 ¼ e1e2 � � � ek�1sðekÞe�k�1 � � � e�1 ¼ e1e2 � � � ek�1e�k�1 � � � e�1 ¼

� � � ¼ e1e�1 ¼ v. Thus ab� ¼ cmða0Þðb0Þ�c�n ¼ cmvc�n ¼ cmðc�Þn. Now as c has no exit, it is easy to see
that cc� ¼ v. So ab� ¼ cm�n. This shows that vLSðCÞv � A. Hence we have that vLSðCÞv ¼
fPn

i¼�m kicijm; n 2 N0; ki 2 S for i ¼ �m; :::; ng. w

Now we state some results which have been used for determining the condition for simplicity
of LSðCÞ when S is a semifield. We recall that a monomial is a path in real edges (respectively,
path in ghost edges) if it contains no ghost edges (respectively, no real edges). A polynomial is in
only real edges (respectively, in only ghost edges) if it is a sum of real paths (respectively, ghost
paths). The following result proved useful in finding the condition for simplicity of LSðCÞ when S
is a semifield. Recall that a commutative semiring S with 1 and 0 (with 1 6¼ 0) is called a semi-
field if every nonzero element of S is a unit in S.

Theorem 3.9. [9, Lemma 3.2] Let C ¼ ðV;E; s; rÞ be a graph with the property that every cycle in
C has an exit. If S is a semifield and a 6¼ 0 is a polynomial in only real edges then there exist
a; b 2 LSðCÞ such that aab 2 V.

The condition for simplicity of LSðCÞ was considered by Katsov et al. [9]. We recall the defini-
tions of hereditary and saturated subsets of the vertex set of a graph.

Definition 3.10. Consider a graph C ¼ ðV; E; s; rÞ. A subset H � V is called hereditary if sðeÞ 2
H ) rðeÞ 2 H for all e 2 E; and H � V is called saturated if for any regular vertex
v, rðs�1ðvÞÞ � H ) v 2 H.

Obviously, 0= and V are both hereditary and saturated subsets of V.
The following result was established by Katsov et al. [9, Lemma 2.6], which is a generalization

of the analogous result obtained by Abrams and Pino for fields (cf. [3, Theorem 3.1]).

Lemma 3.11. [9, Lemma 2.6] Let C ¼ ðV;E; s; rÞ be a graph, S be a commutative semiring, and I
be an ideal of LSðCÞ. Then, I \ V is a hereditary and saturated subset of V.

Theorem 3.12. [9, Theorem 3.4] A Leavitt path algebra LSðCÞ of a graph C ¼ ðV; E; s; rÞ with coef-
ficients in a semifield S is simple if and only if both of the following conditions are satisfied:

i. The only hereditary and saturated subsets of V are 0= and V;
ii. Every cycle in C has an exit.

Katsov et al. in fact settled the following problem: how far can the previous theorem be
extended for the commutative ground semiring S? They proved the following theorem giving a
necessary and sufficient condition for the simplicity of LSðCÞ for a commutative semiring.

Theorem 3.13. [9, Theorem 3.5] The Leavitt path algebra LSðCÞ of a graph C ¼ ðV; E; s; rÞ with
coefficients in a commutative semiring S is ideal-simple if and only if the following three conditions
are satisfied:

i. S is a semifield;
ii. The only hereditary and saturated subsets of V are 0= and V;
iii. Every cycle in C has an exit.
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4. Leavitt path algebra LSðCÞ over a Clifford semifield S

Now we study Leavitt path algebras over Clifford semifields. Before going into the formal defin-
ition, we consider S-semimodules and S-semialgebras for a Clifford semiring S.

Definition 4.1. Let S be a commutative Clifford semiring with 0 and 1. An S-semimodule over
the Clifford semiring S is a commutative inverse monoid ðM;þÞ with 0 together with a scalar
multiplication ðs;mÞ 7! sm from S	M to M which satisfies the identities ðs1s2Þm ¼
s1ðs2mÞ; sðm1 þm2Þ ¼ sm1 þ sm2; ðs1 þ s2Þm ¼ s1mþ s2m; 1m ¼ m; s0M ¼ 0M ¼ 0m for all
s; s1; s2 2 S and m;m1;m2 2 M.

Definition 4.2. Let S be a commutative Clifford semiring with 0 and 1. Then ðA;þ; �Þ is said to
be an S-semialgebra (or simply S-algebra) over S if

(i) ðA;þ; �Þ is an additive inverse semiring with 0,
(ii)ðA;þÞ is an S-semimodule and
(iii) ðsaÞb ¼ sðabÞ ¼ aðsbÞ for all s 2 S and a; b 2 A.

Example 4.3. Let S be a commutative Clifford semiring with 0 and 1. Then the matrix semiring
MnðSÞ of all n	 n matrices over S is an additive inverse semiring such that EþðMnðSÞÞ is a k-
ideal of MnðSÞ.

Example 4.4. Let U be a set and S be a commutative Clifford semiring with 0 and 1. Let A be
the set of all mappings f : U ! S. Define addition “þ” and multiplication “�” on A by ðf þ
gÞðuÞ ¼ f ðuÞ þ gðuÞ and ðf � gÞðuÞ ¼ f ðuÞgðuÞ for all u 2 U. Then ðA;þ; �Þ is a semiring. First we
show that A is an additive inverse semiring. For this, let f 2 A, and we define a function f 0 :
U ! S by f 0ðuÞ ¼ ðf ðuÞÞ0 for all u 2 U. Then f 0 2 A satisfies f þ f 0 þ f ¼ f and f 0 þ f þ f 0 ¼ f 0.
Let g be any element of Vþðf Þ, where Vþðf Þ is the set of all additive inverses of f. Then f þ g þ
f ¼ f and g þ f þ g ¼ g. This implies that for all u 2 U, we have f ðuÞ þ gðuÞ þ f ðuÞ ¼ f ðuÞ and
gðuÞ þ f ðuÞ þ gðuÞ ¼ gðuÞ, that is, gðuÞ 2 Vþðf ðuÞÞ in the semiring S. Since S is an additive
inverse semiring, we must have that gðuÞ ¼ ðf ðuÞÞ0 ¼ f 0ðuÞ for all u 2 U. Therefore, g ¼ f 0.
Hence f 0 is the unique additive inverse of f in A and hence A is an additive inverse semiring. For
s 2 S and f 2 A we define sf : U ! S by ðsf ÞðuÞ ¼ sf ðuÞ for all u 2 U. Then ðA;þÞ is an S-semi-
module. Moreover, ðsf Þg ¼ sðfgÞ ¼ f ðsgÞ for all s 2 S and f ; g 2 A. Hence A is an S-semialgebra.
Now EþðAÞ is an ideal of A. To show that EþðAÞ is a k-ideal of A, let f ; f þ g 2 EþðAÞ. Then for
all u 2 U, we have that f ðuÞ; f ðuÞ þ gðuÞ 2 EþðSÞ. Since S is a Clifford semiring, EþðSÞ is a k-
ideal of S. This implies that gðuÞ 2 EþðSÞ, that is, gðuÞ þ gðuÞ ¼ gðuÞ for all u 2 U. Therefore,
ðg þ gÞðuÞ ¼ gðuÞ for all u 2 U, that is, gþ g¼ g, that is, g 2 EþðAÞ. Consequently, A is an addi-
tive inverse semiring such that EþðAÞ is a k-ideal of A.

Now we introduce the Leavitt path algebra of a graph C over a Clifford semiring.

Definition 4.5. Let C ¼ ðV;E; s; rÞ be a directed graph and S be a Clifford semiring. The Leavitt
path algebra LSðCÞ of the graph C with coefficients in S is the S-algebra given by the set of gener-
ators V [ E [ E� (where e 7! e� gives a bijection between E and E�, and V; E;E� are pairwise dis-
joint sets) satisfying the following relations:

1. vu ¼ dv;uv for all v; u 2 V;
2. sðeÞe ¼ e ¼ erðeÞ; rðeÞe� ¼ e� ¼ e�sðeÞ for all e 2 E;
3. e�f ¼ de;f rðeÞ for all e; f 2 E;
4. v ¼Pe2s�1ðvÞ ee

� whenever v 2 V is a regular vertex.
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Remark 4.6. It is easy to see that the mappings given by v 7! v, for v 2 V, and e 7! e�; e� 7! e for
e 2 E, produce an involution on the algebra LSðCÞ; and for any path p ¼ e1e2:::en there exists
p� :¼ e�ne

�
n�1:::e

�
1. We see that the Leavitt path algebra LSðCÞ can also be defined as the quotient

of the free S-algebra S ¼ <v; e; e� j v 2 V; e 2 E; e� 2 E�> by the congruence “�” generated by
the following ordered pairs:

i. ðvu; dv;uvÞ for all v; u 2 V ,
ii. ðsðeÞe; eÞ; ðe; erðeÞÞ, and ðrðeÞe�; e�Þ; ðe�; e�sðeÞÞ for all e 2 E,
iii. ðe�f ; de;f rðeÞÞ for all e; f 2 E,
iv. ðv;Pe2s�1ðvÞ ee

�Þ for all regular vertices v 2 V.

Remark 4.7. As shown in Proposition 4.8 next, all generators fv; e; e�jv 2 V; e 2 E; e� 2 E�g of
LSðCÞ (for any graph C ¼ ðV; E; s; rÞ) are nonadditive idempotents. Furthermore, from the above
remark, it readily follows that LSðCÞ is, in fact, the “largest” algebra generated by the elements
fv; e; e�jv 2 V; e 2 E; e� 2 E�g satisfying the relations (1)–(4) of Definition 4.5. In other words,
LSðCÞ has the following universal property: If A is an S-algebra generated by a family of elements
fav; be; ce� jv 2 V; e 2 E; e� 2 E�g satisfying relations analogous to the relations (1)–(4) in
Definition 4.5, then there always exists an S-algebra homomorphism / : LSðCÞ ! A given by
/ðvÞ ¼ av;/ðeÞ ¼ be and /ðe�Þ ¼ ce� .

Proposition 4.8. If C is a graph and S is a Clifford semiring with identity, then the Leavitt path
algebra LSðCÞ has the following properties:

i. all elements of the set fv; e; e�jv 2 V; e 2 Eg are nonadditive idempotents;
ii. if a, b are distinct elements in S, then av 6¼ bv for all v 2 V.

Proof. The proof given for the case of rings in [15, Proposition 3.4], which, in fact, uses a con-
struction similar to that of the case of fields from [6, Lemma 1.5], is based on Remark 4.7. One
needs to construct an S-algebra A as mentioned in Remark 4.7 having all generators
fav; be; ce� jv 2 V; e 2 E; e� 2 E�g to be nonzero. It almost does not depend on the “abelianness”
used in the case of a ring. So it works in our semiring setting as well. Just for the reader’s con-
venience, we have decided to sketch it here.

Let I be an infinite set of cardinality at least jV [ Ej, and let Z :¼ SðIÞ be a free S-semimodule
with the basis I, that is, Z is a direct sum of jIj copies of S. For each e 2 E, let Ae :¼ Z, and for
each v 2 V , let

Av :¼ �e2s�1 vð Þ Ae if s�1 vð Þ 6¼ 0=;
Z if v is a sink

�

Note that all Ae’s and Av’s are mutually isomorphic, since each of them is the direct sum of jIj
copies of S. Let A :¼ �v2V Av. For each v 2 V define Tv : Av ! Av to be the identity map and
extend it to a homomorphism Tv : A ! A by defining Tv to be zero on A� Av. Also, for each
e 2 E choose an isomorphism Te : ArðeÞ ! Ae � AsðeÞ and extend it to a homomorphism Te : A !
A by mapping it to zero on A� ArðeÞ. Finally, we define Te� : A ! A by taking the isomorphism
Te

�1 : Ae � AsðeÞ ! ArðeÞ and extending it to a homomorphism Te� : A ! A by letting Te� to be
zero on A� Ae. Now consider the subalgebra B of HomSðA;AÞ generated by
fTv;Te;Te� jv 2 V; e 2 E; e� 2 E�g. For each v 2 V we have Av ¼ S�M for some S-semimodule
M. Then Tvð1; 0Þ þ Tvð1; 0Þ ¼ ð1; 0Þ þ ð1; 0Þ ¼ ð2; 0Þ 6¼ ð1; 0Þ ¼ Tvð1; 0Þ. This implies that Tv þ
Tv 6¼ Tv and thus Tv is not an additive idempotent. Similarly, we can prove that Te and Te� are
also nonadditive idempotent elements for each e 2 E. Thus fTv;Te;Te� jv 2 V; e 2 E; e� 2 E�g is a
collection of nonadditive idempotent elements satisfying the relations described in Definition 4.5.
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By the universal property of LSðCÞ, it follows that the elements of the set fv; e; e�jv 2 V; e 2
E; e� 2 E�g are nonadditive idempotents and thus (i) is established. Next, let a, b be two distinct
elements in S. We have aTvð1; 0Þ ¼ Tvða; 0Þ ¼ ða; 0Þ 6¼ ðb; 0Þ ¼ Tvðb; 0Þ ¼ bTvð1; 0Þ. So
aTv 6¼ bTv. The universal property of LSðCÞ then implies that av 6¼ bv, and thus (ii) is estab-
lished. w

Now we concentrate on the properties of Leavitt path algebras defined over
Clifford semifields.

Proposition 4.9. Let C be a graph with the property that every cycle in C has an exit, and let S be
a Clifford semifield. If a 2 LSðCÞ is a polynomial in only real edges whose coefficients are all in
S n EþðSÞ, then there exist a; b 2 LSðCÞ such that aab ¼ kv for some k 2 S n EþðSÞ and v 2 V.

Proof. We write the polynomial a in the form a ¼Pi kiqi, where the qi’s are distinct real paths
and ki 2 S n EþðSÞ for all i. From the set fqig, we choose some p such that no proper prefix path
of p is contained therein. Let v ¼ rðpÞ. Then, using [9, Remark 2.7], we get
p�av ¼ kvþPi kip

�qi, where the sum is taken over all qi’s that have p as a proper prefix path
and rðqiÞ ¼ v, so that p�qi 2 CPðvÞ. So writing p�av as a1, we have that a1 ¼ kvþPn

i¼1 kipi;
where for each i, pi is a closed path based on v of positive length and 0 6¼ k 2 S. As all coeffi-
cients of a are nonadditive idempotents, k is a nonadditive idempotent. Let some c 2 CSPðvÞ be
fixed. For any pi 2 CPðvÞ, one may write pi ¼ cnip0i with ni 2 N maximal, so that either p0i ¼ v or
p0i is of the form dip00i with di 2 CSPðvÞ; di 6¼ c. In the latter case, ðc�Þniþ1pi ¼ c�p0i ¼ c�dip00i ¼ 0 by
[9, Remark 2.7]. If n ¼ maxfniji ¼ 1; 2; :::; ng þ 1, then ðc�Þnpicn ¼ pi if pi ¼ cni , and
ðc�Þnpicn ¼ 0, otherwise. So ðc�Þna1cn ¼ kvþPj kjc

nj with nj>0. In other words, if ðc�Þna1cn is
denoted by a0 then a0 ¼ kvþ cPðcÞ for some polynomial P. Now let c ¼ e1e2 � � � em. By our
hypothesis and [2, Lemma 2.5], there exists an exit f 2 C for c. Let sðf Þ ¼ sðejÞ with f 6¼ ej. Let
z ¼ e1e2ej�1 � � � fejþ1 � � � en. Then s(z)¼ v and z�c ¼ 0. Now z�a0z ¼ z�kvz þ z�cPðcÞz ¼
kz�vz ¼ kz�sðzÞz ¼ kz�z ¼ krðzÞ. Writing a ¼ z�ðc�Þnp� and b ¼ vcnz, we have that aab ¼ krðzÞ.
Thus aab ¼ kv for some a, b and nonadditive idempotent k in S and some v 2 V. w

Corollary 4.10. Let C be a graph with the property that every cycle in C has an exit. Also, let S be
a Clifford semifield. If a full k-ideal J in LSðCÞ contains a nonadditive idempotent polynomial a in
only real edges, then J contains a vertex.

Proof. Since a is not an additive idempotent polynomial, a must have some coefficient which is not an
additive idempotent. We write a ¼ dþ b, where d contains those terms whose coefficients are nonaddi-
tive idempotents and b contains those terms whose coefficients are all additive idempotents. Now b 2
EþðLSðCÞÞ � J (since J is a full ideal). So both dþ bð¼ aÞ and b belong to J. As J is a full k-ideal, this
implies that d 2 J. Now d is a polynomial in only real edges whose coefficients are all nonadditive idem-
potents. By Proposition 4.9, we then have that there exist a; b 2 LSðCÞ such that adb ¼ kv for some
nonadditive idempotent k 2 S and some v 2 V. Now as k is a nonadditive idempotent, it is invertible in
S. So there exist r 2 S such that rkþ 1þ 10 ¼ 1. Hence rkvþ ð1þ 10Þv ¼ v. Now rkv ¼ radb 2 J.
Also, ð1þ 10Þv, being an additive idempotent, belongs to EþðLSðCÞÞ and hence it belongs to J. So v ¼
rkvþ ð1þ 10Þv belongs to J. Thus J contains a vertex. w

Now we consider the product of two nonadditive idempotent polynomials in LSðCÞ. First we
have the following lemma.

Lemma 4.11. If S is a Clifford semifield, then the product of two nonadditive idempotents cannot
be an additive idempotent.
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Proof. Let a, b be two nonadditive idempotent elements in S. If possible, let ab¼ e be an additive
idempotent. Now as a is a nonadditive idempotent and S is a Clifford semifield, there exists r 2 S
such that raþ 1þ 10 ¼ 1. So rabþ ð1þ 10Þb ¼ b. This implies that b ¼ reþ ð1þ 10Þb. Now re and
ð1þ 10Þb are both additive idempotents (since e and 1þ 10 are additive idempotents), and hence b is
an additive idempotent. This is a contradiction. So ab cannot be an additive idempotent. w

Proposition 4.12. The product of two nonadditive idempotent polynomials in LSðCÞ (where S is a
Clifford semifield and C is a graph) cannot be an additive idempotent polynomial.

Proof. Any polynomial in LSðCÞ is the sum of some monomials of the form kpq�, where p, q are
paths in C with rðpÞ ¼ rðqÞ and k 2 S. Let P1, P2 be two nonadditive idempotent polynomials in
LSðCÞ. So there exists at least one monomial in P1 such that the corresponding coefficient k1 is a
nonadditive idempotent element in S; and similarly P2 contains a monomial such the correspond-
ing coefficient k2 is a nonadditive idempotent in S. Now in P1P2, the terms whose coeffiecients
have at least one additive idempotent (of S) will be additive idempotent monomials. However,
P1P2 clearly contains a term having coefficient k1k2. By Lemma 4.11, k1k2 is a nonadditive idem-
potent in S. So P1P2 has a monomial whose coefficient is nonadditive idempotent in S. From the
consideration of coefficients of the polynomials in LSðCÞ, this shows that P1P2 is a nonadditive
idempotent polynomial. So the product of two nonadditive idempotent polynomials in LSðCÞ can-
not be an additive idempotent polynomial. w

5. Full k-Simplicity of LSðCÞ
In this section, we consider the conditions for full k-simplicity of LSðCÞ of a graph C over a
Clifford semifield S. For Leavitt path algebras defined over fields and semirings, the conditions
for ideal-simpleness were studied in detail (cf. [2,9]). Here we look for Clifford semifields and
graphs for which the corresponding Leavitt path algebras become full k-ideal simple.

Theorem 5.1. Let C be a graph and S be a Clifford semifield. Also, let EþðLSðCÞÞ be a k-ideal. If
x 2 LSðCÞ and x 62 EþðLSðCÞÞ, then there exists c 2 Eð�Þ such that xc 62 EþðLSðCÞÞ and xc is a
polynomial in only real edges.

Proof. Let x ¼Pn
i¼1 kipiq

�
i , where ki 2 S; pi; qi 2 Eð�Þ. Suppose x 62 EþðLSðCÞÞ. We choose a vertex

v 2 V such that xv 62 EþðLSðCÞÞ. It is easy to see that such a vertex v always exists as follows:
since x 62 EþðLSðCÞÞ; kipiq�i 62 EþðLSðCÞÞ for some i ¼ 1; 2; :::; n, and for that i we have xvi ¼
kipiq�i 62 EþðLSðCÞÞ where vi ¼ sðqiÞ. Now having chosen such a v, by regrouping terms (if
needed) we may write xv ¼Pm

j¼1 xje
�
j þ y, where ej 2 Eð�Þ with sðejÞ ¼ v; ej 6¼ ej0 for j 6¼ j0 and y

is a polynomial in only real edges. We assume that xv is represented as an element of minimal
degree in ghost edges. We now consider two cases.

Case I: Let xvej 2 EþðLSðCÞÞ for all j ¼ 1; 2; :::;m. Now xvej ¼
Pm

j¼1 xje
�
j ej þ yej, which implies

that xvej ¼ xj þ yej ¼ fj (say). By our assumption, fj 2 EþðLSðCÞÞ for all j ¼ 1; 2; :::;m. Now
xj þ ðyþ y0Þej ¼ fj þ y0ej. So xje�j þ ðy0 þ yÞeje�j ¼ fje�j þ y0eje�j . Then

xvþ yþ y0
� �Xm

j¼1

eje
�
j ¼

Xm
j¼1

xje
�
j þ yþ y0

� �Xm
j¼1

eje
�
j þ y ¼

Xm
j¼1

fje
�
j þ

Xm
j¼1

y0eje�j þ y:

Multiplying both sides by v, we get that xvþ ðyþ y0ÞPm
j¼1 eje

�
j ¼

Pm
j¼1 fje

�
j þPm

j¼1 y
0eje�j þ yv ¼Pm

j¼1 fje
�
j þ yðPm

j¼1 eje
�
j Þ0 þ yv. Now xv 62 EþðLSðCÞÞ; ðyþ y0ÞPm

j¼1 eje
�
j 2

EþðLSðCÞÞ. As EþðLSðCÞÞ is a k-ideal, this implies that xvþ ðyþ y0ÞPm
j¼1 eje

�
j 62 EþðLSðCÞÞ. So
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Pm
j¼1 fje

�
j þ yððPm

j¼1 eje
�
j Þ0 þ vÞ does not belong to EþðLSðCÞÞ. Now

Pm
j¼1 fje

�
j is in EþðLSðCÞÞ (as

fj is idempotent), so yððPm
j¼1 eje

�
j Þ0 þ vÞ 62 EþðLSðCÞÞ. This shows that y 62 EþðLSðCÞÞ and

ðPm
j¼1 eje

�
j Þ0 þ v 62 EþðLSðCÞÞ. From the latter relation, we find that v 6¼Pm

j¼1 eje
�
j . So there exists

an edge f 62 fe1; e2; :::; emg such that s(f)¼ v (since v ¼Pe2s�1ðvÞ ee
�). Then, we have that

xvf ¼Pm
j¼1 xje

�
j f þ yf ¼ yf . Clearly, yf is in real edges only and yf 6¼ 0. As y, f are both nonaddi-

tive idempotents (note that every edge of C is a nonadditive idempotent in LSðCÞ and hence f is
a nonadditive idempotent) and yf 6¼ 0, by Proposition 4.12 we have that yf is a nonadditive idem-
potent. Thus we have a cð¼ vf Þ such that xc is a nonadditive idempotent polynomial in only
real edges.

Case II: Suppose xvej 62 EþðLSðCÞÞ for some j ¼ 1; 2; :::;m. Now xvej ¼ xj þ yej, and the num-
ber of ghost edges in xvej is strictly less than that of xv. If xj is a polynomial in only real edges
then we obtain the result by proceeding similarly to Case I (as xj is a nonadditive idempotent).
Otherwise we repeat the above process to reduce the number of ghost edges in each step until we
are left with a polynomial in only real edges (this process will terminate since the number of
ghost edges in xv is finite). w

Corollary 5.2. Let C be a graph and S be a Clifford semifield such that EþðLSðCÞÞ is a k-ideal of
LSðCÞ. If J is a nontrivial full k-ideal of LSðCÞ, then J contains a nonadditive idempotent polyno-
mial in only real edges.

Proof. As J is a nontrivial full k-ideal, EþðLSðCÞÞ$J. Thus J contains a nonadditive idempotent x.
Thus, from Theorem 5.1, it follows that J contains a nonadditive idempotent polynomial xc (for
some c) in only real edges. w

Theorem 5.3. Let C ¼ ðV;E; s; rÞ be a graph such that every cycle in C has an exit. Let S be a
Clifford semifield. If J is a nontrivial full k-ideal of LSðCÞ, then J \ V 6¼ 0= and J \ V is a hereditary
and saturated subset of V.

Proof. From Corollary 5.2, J contains a nonadditive idempotent polynomial in only real edges. So
by Corollary 4.10, J \ V 6¼ 0=. Also, J \ V is a hereditary and saturated subset of V (cf. Lemma
3.11). w

Theorem 5.4. Let C ¼ ðV;E; s; rÞ be a graph. Let S be a Clifford semifield such that EþðLSðCÞÞ is
a k-ideal of LSðCÞ. Then LSðCÞ is full k-ideal simple if and only if both the following conditions
are satisfied.

i. The only hereditary and saturated subsets of V are 0= and V.
ii. Every cycle in C has an exit.

Proof. First, let the conditions (i) and (ii) hold. If possible, let J be a nontrivial full k-ideal of
LSðCÞ. Then from Theorem 5.3, we have that J \ V is a nonempty hereditary saturated subset of
V. By condition (i), we have that J \ V ¼ V, that is, V � J. So J contains local units and conse-
quently, J ¼ LSðCÞ. This shows that LSðCÞ has no nontrivial full k-ideal.

Conversely, let LSðCÞ be free of nontrivial full k-ideals. By following the proof of [2,
Theorem 3.11] (which does not use the additive inverse of the ring setting and can therefore
be used for semirings also), we can show that 0= and V are the only hereditary and saturated
subsets of V. Finally, let there exist some cycle c (based on some vertex v) in C such that c
has no exit. We show that I ¼ <vþ c>þ EþðLSðCÞÞ, which is the k-closure of
<vþ c>þ EþðLSðCÞÞ, is a nontrivial full k-ideal of LSðCÞ. Clearly, EþðLSðCÞÞ is properly

12 R. SEN GUPTA ET AL.



contained in I. We show that v 62 I. If possible, let v 2 I. Then there exist monic monomials
ai; bi; cj; dj such that

vþ
Xn
i¼1

kiai vþ cð Þbi þ f ¼
Xm
j¼1

ljcj vþ cð Þdj þ g � � � � � �ð Þ

where ki; lj 2 S for i ¼ 1; 2; :::;m, and j ¼ 1; 2; :::; n, and f ; g 2 EþðLSðCÞÞ. It is easy to see that we
can take f¼ g (if f 6¼ g, we add first f and then g to both sides of (� � �) to get an idempotent
fþ g on both sides). Now noting that vðvþ cÞv ¼ vþ c, we can assume that (by multiplying both
sides by v if necessary) vaiv ¼ ai; vbiv ¼ bi for i ¼ 1; 2; :::; n, and vcjv ¼ cj and vdjv ¼ dj for
j ¼ 1; 2; :::;m. This shows that the monomials ai; bi; cj; dj are elements of vLSðCÞv. By Proposition
3.8, it then follows that (noting that v ¼ c0 and also that ðvþ cÞ commutes with c and c�) bothPn

i¼1 kiaiðvþ cÞbi and
Pm

j¼1 ljcjðvþ cÞdj are products of some polynomial in c; c� with (vþ c). So
we have that

vþ vþ cð ÞP c; c�ð Þ þ f ¼ vþ cð ÞQ c; c�ð Þ þ f � � ��ð Þ
(unless vfv¼ 0 in which case the term f vanishes from both sides and we take f¼ 0 in that case).
Writing ðc�Þn ¼ c�n for any n 2 N, let Qðc; c�Þ ¼ b�mc�m þ � � � þ b�1c�1 þ b0vþ b1c1 þ � � � þ
bycy and Pðc; c�Þ ¼ a�nc�n þ � � � þ a�1c�1 þ a0vþ a1c1 þ � � � þ atct , where ai 6¼ 0 for i ¼ �n; :::; t
and bi 6¼ 0 for i ¼ �m; :::; y. From ð� � ��Þ, we then have

a�nc�n þ
X�1

i¼�nþ1

ai�1 þ aið Þci
 !

þ 1þ a�1 þ a0 þ fð Þvþ
Xt
i¼1

ai�1 þ aið Þci
 !

þ atctþ1

¼ b�mc�m þ
X�1

i¼�mþ1

bi�1 þ bið Þci
 !

þ b�1 þ b0 þ fð Þvþ
Xy
i¼1

bi�1 þ bið Þci
 !

þ bycyþ1

Comparing both sides, we have that m¼ n and t¼ y. Then, comparing the coefficients of the
negative powers of c, we have that

a�n ¼ b�n � � � � � �n � �ð Þ
a�n þ a�nþ1 ¼ b�n þ b�nþ1 � � � � � �nþ 1 � �ð Þ

a�nþ1 þ a�nþ2 ¼ b�nþ1 þ b�nþ2 � � � � � �nþ 2 � �ð Þ
a�nþ2 þ a�nþ3 ¼ b�nþ2 þ b�nþ3 � � � � � �nþ 3 � �ð Þ

..

.

a�3 þ a�2 ¼ b�3 þ b�2 � � � � � �2 � �ð Þ
a�2 þ a�1 ¼ b�2 þ b�1 � � � � � �1 � �ð Þ

Now putting a�n ¼ b�n in ð� � �nþ 1 � �Þ, we have that a�n þ a�nþ1 ¼ a�n þ b�nþ1. Next,
adding a�n to both sides of ð� � �nþ 2 � �Þ, we have that
a�n þ a�nþ1 þ a�nþ2 ¼ a�n þ b�nþ1 þ b�nþ2. Hence we have that x�n þ a�nþ2 ¼ x�n þ b�nþ2

where x�n ¼ a�n þ a�nþ1. Adding x�n to both sides of ð� � �nþ 3 � �Þ we have that x�nþ1 þ
a�nþ3 ¼ x�nþ1 þ b�nþ3 where x�nþ1 ¼ x�n þ a�nþ2. Proceeding this way, we obtain that x�4 þ
a�2 ¼ x�4 þ b�2 from ð� � �2 � �Þ. So adding x�4 to both sides of ð� � �1 � �Þ, we get that
aþ a�1 ¼ aþ b�1, where a ¼ x�4 þ a�2 (which is in fact equal to a�n þ a�nþ1 þ � � � þ a�2).

Now comparing the coefficients of the positive powers of c in ð� � ��Þ, we have that

at ¼ bt � � � � � t � �ð Þ
at þ at�1 ¼ bt þ bt�1 � � � � � t�1 � �ð Þ

at�1 þ at�2 ¼ bt�1 þ bt�2 � � � � � t�2 � �ð Þ
..
.

a1 þ a0 ¼ b1 þ b0 � � � � � 0 � �ð Þ
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Now exactly in the same manner as we did with the earlier equations, we obtain from equa-
tions ð� � t � �Þ to ð� � 0 � �Þ that bþ a0 ¼ bþ b0 where b ¼ at þ at�1 þ � � � þ a1. Now compar-
ing the constant terms in both sides of ð� � ��Þ, we get that

1þ a0 þ a�1 þ fð Þv ¼ b0 þ b�1 þ fð Þv � � � � � � � �ð Þ
Adding ðbþ aÞv to both sides of ð� � � � �Þ, we get that

1þ bþ a0ð Þ þ aþ a�1ð Þ þ f
� �

v ¼ bþ b0ð Þ þ aþ b�1ð Þ þ f
� �

v

Now as aþ a�1 ¼ aþ b�1 and bþ a0 ¼ bþ b0, we have that vþ dvþ f ¼ dvþ f (note that
fv¼ f), where d ¼ bþ a0 þ aþ a�1. Clearly, dvþ f 6¼ 0 (if f 6¼ 0, then dvþ f ¼ 0 implies that
0 ¼ dvþ f ¼ dvþ f þ f ¼ f , which is a contradiction; again if f¼ 0, then dvþ f ¼ 0 implies that
dv¼ 0, which is a contradiction by Proposition 4.8(ii)). So ðdvþ f Þ0 exists. We add ðdvþ f Þ0 to
both sides to get that vþ hþ h0 ¼ hþ h0 (where h ¼ dvþ f ). Now hþ h0 2 EþðLSðCÞÞ. As
EþðLSðCÞÞ is a k-ideal, vþ hþ h0 and hþ h0 both belonging to EþðLSðCÞÞ implies that
v 2 EþðLSðCÞÞ. This is a contradiction (by Proposition 4.8(i)). So v 62 I and thus I is a full k-ideal
of LSðCÞ which is not equal to LSðCÞ. This is a contradiction to our assumption. Hence every
cycle in C must have an exit. This completes the proof. w

We finish this section by demonstrating the use of Theorem 5.4 in reestablishing the full k-
simplicity of the Leavitt path algebra of the finite line graph Cn (Figure 1).

It is known that LSðCnÞ is isomorphic to MnðSÞ. By Theorem 2.11, MnðSÞ is a full k-simple
algebra. However, this fact can also be justified by Theorem 4.6, since it is easy to check that the
finite line graph satisfies conditions (i) and (ii) mentioned in Theorem 5.4.

6. Uniqueness theorem for Clifford semifields

Regarding Leavitt path algebras, an important aspect is the Uniqueness theorem (also known as
the Cuntz-Krieger Uniqueness theorem). First, we state the Uniqueness theorems for Leavitt path
algebras defined respectively over commutative rings with 1 and fields.

Theorem 6.1. (The Cuntz-Krieger Uniqueness theorem, [15, Theorem 6.5]) Let every cycle in a
graph C have an exit, and let R be a commutative ring with 1. If S is a ring and f : LRðCÞ ! S is
a ring homomorphism with the property that f ðrvÞ 6¼ 0 for all v 2 V and for all r 2 R�f0g, then f
is injective.

Corollary 6.2. [15, Corollary 6.6] Let C be a graph such that every cycle in C has an exit, and let
K be a field. If S is a ring and f : LKðCÞ ! S is a ring homomorphism with the property that f ðvÞ 6
¼ 0 for all v 2 V, then f is injective.

In this section, we attempt to extend this theorem for LSðCÞ when S is a Clifford semifield.
We first give the following definitions.

Definition 6.3. Let S and T be two Clifford semirings. Let f : S ! T be a mapping. f is called a
c-homomorphism if f ðaþ bÞ ¼ f ðaÞ þ f ðbÞ; f ðabÞ ¼ f ðaÞf ðbÞ; f ð0Þ ¼ 0; f ð1Þ ¼ 1, and f maps
additive idempotent elements of S into additive idempotent elements of T.

Figure 1. Finite line graph Cn.
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Definition 6.4. Let S and T be two Clifford semirings. Let f : S ! T be a c-homomorphism. The
c-kernel of f is the subset of S defined as: ckerðf Þ ¼ fx 2 Sjf ðxÞ is an additive idempotent of Tg.

Definition 6.5. Let S and T be two Clifford semirings. Let f : S ! T be a c-homomorphism. f is
called c-injective if for any a; b 2 S; f ðaÞ ¼ f ðbÞ implies that aþ e ¼ bþ e for some additive
idempotent e 2 S.

Now we give the following result for c-homomorphisms which is similar to the Cuntz-Krieger
Uniqueness theorems.

Theorem 6.6. Let C ¼ ðV;E; r; sÞ be a graph such that every cycle in C has an exit. Suppose S is a
Clifford semifield such that EþðLSðCÞÞ is a k-ideal of LSðCÞ. Let T be a Clifford semiring. If f is a
c-homomorphism from LSðCÞ to T with the property that f(v) is not an additive idempotent for any
v 2 V, then f is c-injective.

Proof. If possible, let ckerðf Þ 6¼ EþðLSðCÞÞ. If e 2 EþðLSðCÞÞ, then as f is a c-homomorphism, we
have that f(e) is an additive idempotent in T, that is, e 2 ckerðf Þ. Thus, EþðLSðCÞÞ � ckerðf Þ. So
if possible, let EþðLSðCÞÞ be a proper subset of cker(f). Let x 2 ckerðf Þ n EþðLSðCÞÞ. Then by
Theorem 5.1, there exists some c 2 Eð�Þ such that xc is a nonadditive polynomial in cker(f) in
only real edges. Now as cker(f) is a full k-ideal, this implies that cker(f) contains a vertex (by
Corollary 4.10). Let v be such a vertex. Then, f(v) is an idempotent, which contradicts our
assumption that f ðVÞ \ EþðTÞ ¼ 0=. Thus ckerðf Þ ¼ EþðLSðCÞÞ. Let a; b 2 LSðCÞ such f ðaÞ ¼ f ðbÞ.
Then f ðaþ b0Þ ¼ f ðaÞ þ f ðb0Þ ¼ f ðbÞ þ f ðb0Þ ¼ f ðbþ b0Þ. As bþ b0 is an additive idempotent and
f is a c-homomorphism, f ðbþ b0Þ is an additive idempotent. So f ðaþ b0Þ is an additive idempo-
tent. Hence aþ b0 2 ðckerðf Þ ¼Þ EþðLSðCÞÞ. So there exists d 2 EþðLSðCÞÞ such that aþ b0 ¼ d.
Then aþ b0 þ b ¼ d þ b ¼ bþ d. So we have found idempotents u ð¼ bþ b0Þ; v ð¼ dÞ such that
aþ u ¼ bþ v. Now uþ v, being the sum of two additive idempotents, is an additive idempotent.
So, aþ uþ u ¼ bþ vþ u ) aþ u ¼ bþ uþ v ) aþ uþ v ¼ bþ uþ vþ v ) aþ uþ v ¼
bþ uþ v. Thus f ðaÞ ¼ f ðbÞ implies that aþ w ¼ bþ w for an additive idempotent w ð¼ uþ vÞ.
Hence, f is c-injective. w
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